
Rosetta Harness

OpenCL
Harness
OpenCL
Kernels

C/C++

C/C++
Kernels

Reconfigurable
Fabric

Host Processing
System

Synthesized
Hardware

Accelerator

Host
Application

K-Nearest Neighbor Digit Recognition

Applications Domains Constraints Kernels/Algorithms

Voice Removal and Pitch Shifting Audio Processing Latency (Real-Time) FFT, Inverse FFT, DSP Filters

DNA and Protein Sequencing Bioinformatics Throughput Smith Waterman

Advanced Encryption Standard Cryptography Throughput Matrix Substitutions and Permutations

Monte Carlo Option-Pricing Financial Analysis Throughput / Latency Black Scholes, Mersenne Twister, Box Muller

Digit Recognition Machine Learning Throughput Population-Count, K-NN, K-Means

Convolutional Neural Networks Machine Learning Throughput Convolution, Soft Max and Max Pool Layers

Face Detection Video Processing Throughput Viola Jones Algorithm

Lane Detection Video Processing Latency (Real-Time) Edge Detection

Rosetta: A Realistic Benchmark Suite for Software Programmable FPGAs
Udit Gupta, Steve Dai, Zhiru Zhang

Computer Systems Laboratory, Electrical and Computer Engineering, Cornell University, Ithaca, NY

Proposed Initial Benchmarks for Rosetta

Rosetta Benchmark Development Flow
Realistic benchmarks are important for the development of
sophisticated yet scalable high-level synthesis (HLS) tools
that allow FPGAs to be programmed in software while
achieving high-performance designs.

▪ We propose a suite of realistic software applications with
enforceable system-level hardware constraints to model
hardware accelerators targeting heterogeneous FPGAs.

▪ We present a C/C++ and OpenCL design and verification
flow that accommodates both the sequential and parallel
programming models commonly supported by HLS.

Overview

Existing HLS Benchmark Suites

▪ Span a small subset of representative
computing domains that FPGAs target

▪ Consist of small kernels (less than 1000
lines)

▪ Do not support multiple programming
models

▪ Require significant user overhead to add
HLS tool specific compiler directives.

Why are Realistic Applications and Constraints Necessary? Rosetta Application Architecture HLS Optimizations

Realistic HLS designs
require the addition of
tool friendly hardware-
specific directives.
Rosetta provides multiple
implementations with
compiler directives
enforcing:

▪ Pipelining Functions
▪ Loop Unrolling
▪ Latency Constraints

▪ Application specific OpenCL and C/C++
kernels can easily be added to the
generic harnesses.

▪ Synthesis results from the HLS compiler
are used to optimize designs following
the realistic design constraints.

▪ Rosetta provides users with a
framework to run designs on FPGAs.

▪ Host Application - Responsible for
controlling the system and
accelerator including : data transfers.

▪ Kernels - Consist of the compute

intensive portions of the realistic
benchmarks. Retargetable FPGA

Device

HLS Compiled
Hardware

Accelerator

Host Processing
System

Host
Application

Rosetta Benchmark Suite

▪ Realistic: Representative
application domains with large
applications and user enforceable
design constraints

▪ Reducible: Users can profile
applications and sub-kernels for
effective design space exploration

▪ Retargetable: Supports various HLS
tools which target multiple
substrates and FPGA devices

▪ Cross-layer optimizations improve
QoR without user intervention

▪ Generation of adaptive hardware
which make optimizations at
runtime

HLS Tool Flow
Compilation

Transformations

RTL

Scheduling Binding

Allocation

High-Level
Programming
Languages

Control Data
Flow Graph
(CDFG)

Finite State
Machines with
DatapathImproved compiler

support is needed for
more productive design
methodologies.

HLS Compiler

Retargetable FPGA
Boards

HLS
Optimizations

Meets
Realistic
Design

Constraints
HLS

Optimizations

Ye
s

No No

▪ Realistic: Representative application domains with large
applications and user-enforceable design constraints.

▪ Reducible: Users can profile applications and sub-kernels
to productively benchmark QoR.

▪ Retargetable: Intended to be vendor-agnostic and target
various FPGA devices.

The Three R’s of Rosetta

▪ Span a limited subset of computing domains and consist of small kernels (less than 1000
lines) which lack the complexity representative of common HLS designs.

▪ Provide no support for multiple programming models and require significant user overhead
in adding HLS-specific optimization directives.

▪ Do not allow convenient parameterization of designs by user.

Existing HLS Benchmark Suites

for digit in range (0, 10):

 for training_inst in training_data[digit]:

diff = training_inst xor test_inst

distance = population_count(diff)

if (distance < min):

 nearest_neighbor = training_inst

 min = distance

return nearest_neighbor

▪ Efficient hardware for population count kernel.
▪ Parallel execution (by loop unrolling) across digits 0-9.
▪ Pipelined execution over training instances.
▪ Partitioned training data increases memory bandwidth.

2-3x runtime speedup observed using FPGAs

Synthesized System Architecture Source Data

Source Code

Rosetta Development Flow and Application Architecture

Baseline Software Design

OpenCL Harness

OpenCL
Kernels

C/C++ Harness

C/C++
Kernels

Rosetta Harness

HLS

Software Simulation

HLS
Optimizations

Design
Constraints

Hardware/Software Co-Simulation

Retargetable FPGA Implementation

Development Flow
▪ C-based application-specific kernels can easily

be added to the generic harnesses.

▪ Synthesis results are used to optimize designs
given design constraints.

▪ Rosetta provides users with a framework to
develop, simulate, and verify designs on FPGAs.

FPGA Implementation

▪ Host Application - Responsible for controlling
the system and accelerator including data
transfers.

▪ Kernels - Consist of the compute intensive
portions of the applications to be accelerated.

Reconfigurable
Fabric

Host Processing
System

Synthesized
Hardware

Accelerator

Host
Application

Rosetta Development Flow and Application Architecture

Development Flow
▪ C-based application-specific kernels

can be easily added to the generic
harnesses.

▪ Synthesis results are used to
optimize designs given design
constraints.

FPGA Implementation

▪ Host Application - Responsible for
controlling the system and the
accelerator.

▪ Kernels - Consist of the compute-
intensive portions of the
applications to be accelerated.

▪ Modern FPGAs are heterogeneous SoCs composed
of multi-core processors, hardened IPs, and
reconfigurable fabric.

▪ Calls for an unprecedented amount of software
programmability as FPGA emerges from a logic to
computing device.

Modern FPGAs and HLS Tools

▪ Insufficient QoR compared to hand-written
RTL and significant productivity gap from pure
software programming.

▪ Needs significant amount of manual code
transformations and lacks automatic compiler
and synthesis optimizations for performance.

Productivity

P
er

fo
rm

an
ce

C-to-gates

Manual
RTL

CPU/GPU
Programming

~2-3X
Efficiency

gap

~5-10X
Productivity gap

Hardware
Design

Our R
ese

arch

Programming
FPGAs?

Software
Programming

▪ State-of-the-arts HLS tools perform
scheduling and binding to convert
untimed behavioral design in
software programming languages to
timed cycle-accurate RTL optimized
for performance, area, and power.

Baseline Software Design

HLS

Software Simulation

HLS Optimizations

Realistic
Design

Constraints

Hardware/Software Co-Simulation

Retargetable FPGA Implementation

