Rosetta: A Realistic Benchmark Suite for Software Programmable FPGAs
Udit Gupta, Steve Dai, Zhiru Zhang T

|

|

Computer Systems Laboratory, Electrical and Computer Engineering, Cornell University, Ithaca, NY ‘ S .E
i

Realistic benchmarks are important for the development of L High-Level
sophisticated yet scalable high-level synthesis (HLS) tools [E-—» Programming

3
that allow FPGAs to be programmed in software while Compilation _anguages
achieving high-performance designs. "l

Transformations
3 —P» Control Data

Allocation | Flow Graph

= We propose a suite of realistic software applications with
enforceable system-level hardware constraints to model

hardware accelerators targeting heterogeneous FPGAs. / N\ (CDFG)
: cre 4 Scheduling | | Binding
= We present a C/C++ and OpenCL design and verification \;{>Finite State
flow that accommodates both the sequential and parallel 21 | Machines with
programming models commonly supported by HLS. Datapath

* Modern FPGAs are heterogeneous SoCs composed = State-of-the-arts HLS tools perform

The Three R’s of Rosetta

of multi-core processors, hardened IPs, and scheduling and binding to convert
reconfigurable fabric. i i ion i
= Realistic: Representative application domains with large 5 gg:;vr::ibiza:;?;iies;gg Iza os to
applications and user-enforceable design constraints. * (Calls for an unprecedented amount of software . St 5 aNgHds
. Reducible: U e icati 4 sub_k I programmability as FPGA emerges from a logic to timed cycle-accurate RTL optimized
educi e.. sers can profile applications and sub-kernels computing device. for performance, area, and power.
to productively benchmark QoR.
= Retargetable: Intended to be vendor-agnostic and target Existing HLS Benchmark Suites
various FPGA devices.
= Span a limited subset of computing domains and consist of small kernels (less than 1000

lines) which lack the complexity representative of common HLS designs.

K-Nearest Neighbor Digit Recognition

= Provide no support for multiple programming models and require significant user overhead
Source Code in adding HLS-specific optimization directives.

for digit in range (9, 10): = Do not allow convenient parameterization of designs by user.

for training inst in training data[digit]:

diff = training_inst xor test_inst Rosetta Development Flow and Application Architecture
distance = population _count(diff)

f (dist CoN L Development Flow
1f (distance < min): Baseline Software Design » C-based application-specific kernels

nearest_neighbor = training_inst can be easily added to the generic

min = distance | Rosetta Harness | harnesses.

return nearest_nelghbor OpenCL C/C++ ~ = Synthesis results are used to
. . N | | optimize designs given design
Synthesized System Architecture Source Data OpenCL C/C++ constraints.
test_instl Tnearest_neighbor Kernels || Kernels
k] FPGA Implementation
test_mstl Tgféfgscte’neighbor l T 3 o » Host Application - Responsible for
- /[Realistic SV f —— ! 1 controlling the system and the
opulation_coun : 4)' oftware Simulation
\pipelined modules 9 DESIg_n J accelerator.
_ X0 Constraints » Kernels - Consist of the compute-
= e EEEEE - E HLS Optimizations [intensive portions of the
= _— ~__ - \L applications to be accelerated.
EEE - EEE - ,
training_data[0] training_data[9] E ! .) /| : Reco nfigu rable
partitioned partitioned [HLS) ,’I Host Processing <: Fabric
= Efficient hardware for population count kernel. l ;r System
 Parallel execution (by loop unrolling) across digits 0-9. 4{ Hardware/Software Co-Simulation H oet Synthesized
= Pipelined execution over training instances. J; / Apolication Hardware
= Partitioned training data increases memory bandwidth. :r o I : : PP > Accelerator
2-3x runtime speedup observed using FPGAs | [Retargetable FPGA Implementation J -

Proposed Initial Benchmarks for Rosetta

Applications Domains Constraints Kernels/Algorithms
Voice Removal and Pitch Shifting Audio Processing Latency (Real-Time) FFT, Inverse FFT, DSP Filters
DNA and Protein Sequencing Bioinformatics Throughput Smith Waterman
Advanced Encryption Standard Cryptography Throughput Matrix Substitutions and Permutations
Monte Carlo Option-Pricing Financial Analysis Throughput / Latency Black Scholes, Mersenne Twister, Box Muller
Digit Recognition Machine Learning Throughput Population-Count, K-NN, K-Means
Convolutional Neural Networks Machine Learning Throughput Convolution, Soft Max and Max Pool Layers
Face Detection Video Processing Throughput Viola Jones Algorithm
Lane Detection Video Processing Latency (Real-Time) Edge Detection

