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RNNs	can	revolutionize	interactions	with	tech
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Must	deploy	RNNs	onto	resource	constrained	HW
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High compute
footprint

High energy	
footprint

Large memory
footprint

Tens	of	MBs	
for	ASR

Tens	of	GFLOPs
for	ASR

Billions	of	memory	accesses
for	ASR

RNNs	levy	high	inference	cost



Inference	cost	of	ASR	RNNs
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Speech Inputs
(161, 248)

FC (29)

Transcribed Speech

RNN (800)

RNN (800)

RNN (800)

RNN (800)

RNN (800)

Conv2D

DeepSpeech 2 Topology

Over	98%	of	parameters	found	in	recurrent	layers
(over	30	million,	50MB)

Inputs	are	represent	as	a	sequence of	waveforms	

RNN
CNN



RNNs	cost	scales	with	input	length	(timesteps)
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RNNs	cost	scales	with	input	length	(timesteps)
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With	increasing	number	of	timesteps:
- Number	of	matrix-vector	operations	increases	(FLOPs)	
- Activation	storage	increases	(area)

Increasing	number	of	timesteps



RNNs	pose	unique	challenges
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Solutions	for	CNNs	
optimize	static	weights

AlexNet
VGG16

ResNet34



RNNs	pose	unique	challenges
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Solutions	for	CNNs	
optimize	static	weights

RNN	memory	consumption	
dominated	by	dynamic	activation	

requiring	unique	solutions	

AlexNet
VGG16

DeepSpeech2
ResNet34



Reduces	weight	footprint	by	3x

Does	not	compress	activations	(up	to	3x
savings)

Limitations	of	current	sparse	DNN	accelerators
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EIE:	Efficient	Inference	Engine on	Compressed	DNNs
Song	Han,	et.	al.	

ISCA,	2016,	citation	count:	909
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EIE:	Efficient	Inference	Engine on	Compressed	DNNs
Song	Han,	et.	al.	

ISCA,	2016,	citation	count:	909

EIE

sparse	encoding
overhead

weights

activations

Does	not	scale (over	2x savings	at	high	
parallelism)



Proposed	solution:	MASR
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Work	stealing	for	load	balancing

Problem Solution
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Encoding	techniques	to	exploit	sparsity
Memory	centric
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Current	state-of-the-art
Song	Han,	et.	al.	ISCA,	2016
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Pressures	memory	system	(2	pointers/1	weight)

Static weight	encoding	computed	offline
Activations	generated	at	run-time;	uncompressed

Current	state-of-the-art
Song	Han,	et.	al.	ISCA,	2016
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Encoding	techniques	to	exploit	sparsity
Memory	centric
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Logic	centric

Current	state-of-the-art
Song	Han,	et.	al.	ISCA,	2016 Proposed	solution

Pressures	memory	system	(2	pointers/1	weight)

Static weight	encoding	computed	offline
Activations	generated	at	run-time;	uncompressed

MASR binary mask 
encoding
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Logic	centricMemory	centric
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Relieves	memory	pressure	(single pointer)

Compute	sparse	address	at	run-time!
Weights	and	activations	are	compressed

MASR binary mask 
encoding

0 0 1 1
1 1 0 0
0 0 1 0

+				Logic

Encoding	techniques	to	exploit	sparsity

Current	state-of-the-art
Song	Han,	et.	al.	ISCA,	2016 Proposed	solution

Pressures	memory	system	(2	pointers/1	weight)

Static weight	encoding	computed	offline
Activations	generated	at	run-time;	uncompressed
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MASR’s	logic	centric	sparse	encoding

Weights

Activations

Compute	address of	non-zero weight	and	activation	stored	in	compressed	format
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Decoding	non-zero	weight	and	activations
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Can	compute	address	of	sparse	weight/activation	stored	compactly	in	memory!
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Takeaways

3x	memory	
savings	from	
weight	
compression

3x additional	
memory	savings	
from	activation	
compression
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Proposed	solution:	MASR
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Work	stealing	for	load	balancing

Problem

Area

Solution

Logic	centric	sparse	encoding

Optimizes

Scalable	sparse	encoding	architecture
Accelerator	to	exploit	parallelism

Irregular,	sparse	computation
makes	parallelism	hard

High	performance	with	
parallelism	and	irregularity	is	
hard

Large	memory	footprint	– static	
weights	and	dynamic	activations



Memory	centric	encodings	do	not	scale
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Memory	centric	encodings	do	not	scale
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Proposed:	parallelize	logic	centric	encoding
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Proposed:	parallelize	logic	centric	encoding
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Proposed:	parallelize	logic	centric	encoding
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MASR’s	sparse	encoding	improves	scalability

Takeaways

Scalable sparse	encoding	and	architecture
• Enables	highly	parallel	execution	with	varying	number	of	MACs/PEs
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Proposed	solution:	MASR
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Work	stealing	for	load	balancing

Problem

Area

Solution

Logic	centric	sparse	encoding

Optimizes

Scalable	sparse	encoding	architecture
Accelerator	to	exploit	parallelism

Irregular,	sparse	computation
makes	parallelism	hard

High	performance	with	
parallelism	and	irregularity	is	
hard

Large	memory	footprint	– static	
weights	and	dynamic	activations



Parallelism	within	matrix-vector	multiplication
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MASR	micro-architecture:	Parallelizing	across	input	
and	output	neurons

Composed	of	2D	array	of	lanes

• Horizontal	lanes	parallelize	output	neurons

• Vertical	lanes	parallelize	input	neurons

PEs	composed	of	neighboring	horizontal	lanes

• Share	activation	register	file	(area,	power,	load	time)

• Private	weight	and	mask	SRAM	within	lane	
(decoupled	to	enable	high-bandwidth	access)
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MASR:	design	space	exploration
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MASR:	design	space	exploration
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MASR:	design	space	exploration
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MASR:	design	space	exploration
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MASR:	design	space	exploration
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MASR:	Performance,	Energy,	Area	tradeoffs
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MASR	is	2	orders of	magnitude	faster	than	CPU	

Fits	our	on-chip	area	target	for	mobile	devices



MASR:	Performance,	Energy,	Area	tradeoffs
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MASR:	Performance,	Energy,	Area	tradeoffs
MASR	is	2	orders of	magnitude	faster	than	CPU	

Fits	our	on-chip	area	target	for	mobile	devices
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MASR:	Performance,	Energy,	Area	tradeoffs

Takeaways

Parallelism	can	be	configured	to	target:
High-performance
Energy-efficiency
Area-efficiency

54

Ar
ea

 (m
m

2 )

Lanesx64 Lanesx256 Lanesx1024

La
te

nc
y 

(m
s)

En
er

gy
 (u

J)

Area

Energy

Perf

MASR	is	2	orders of	magnitude	faster	than	CPU

Fits	our	on-chip	area	target	for	mobile	devices



Proposed	solution:	MASR
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Work	stealing	for	load	balancing

Problem

Area

Solution

Logic	centric	sparse	encoding

Optimizes

Scalable	sparse	encoding	architecture
Accelerator	to	exploit	parallelism

Performance	
Area
Energy

Irregular,	sparse	computation
makes	parallelism	hard

High	performance	with	
parallelism	and	irregularity	is	
hard

Large	memory	footprint	– static	
weights	and	dynamic	activations



Increasing	number	of	parallel	MACs/lanes	from	64	
to	1024	(16x),	improves	performance	by	5.5x
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Increasing	number	of	parallel	MACs/lanes	from	64	
to	1024	(16x),	improves	performance	by	5.5x

30% MAC	utilization
Remainder	spent	on	stalls/idles	due	to	load	imbalance
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Increasing	number	of	parallel	MACs/lanes	from	64	
to	1024	(16x),	improves	performance	by	5.5x

30% MAC	utilization
Remainder	spent	on	stalls/idles	due	to	load	imbalance

Some	lanes	get	1.5x more	work	(non-zeros)	to	
process
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Dynamic	load	balancing
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Lanes	that	finish	early	can	steal	work	from	neighboring	lanes	that	are	straggling	behind

lane 0
lane 1

lane 0PE1

PE0

Amount of 
work

Lanes



Dynamic	load	balancing
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Horizontal	load	balancing	requires	
duplicating	weights

Lanes	that	finish	early	can	steal	work	from	neighboring	lanes	that	are	straggling	behind

lane 0
lane 1

lane 0PE1

PE0

Amount of 
work

Lanes



Dynamic	load	balancing
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Horizontal	load	balancing	requires	
duplicating	weights

Vertical	load	balancing	requires	
duplicating	weights	and	activation	
register	files

Lanes	that	finish	early	can	steal	work	from	neighboring	lanes	that	are	straggling	behind

lane 0
lane 1

lane 0PE1

PE0

Amount of 
work

Lanes



Dynamic	load	balancing
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Vertical	load	balancing	better	targets	load	imbalance	in	dynamic	activations
Up	to	1.9x speedup	(LANESx1024)
Requires	duplicating	10%	weight	storage	and	activation	register	files

1.9x

Perfect	parallelism	(theoretical)

LANESx64 LANESx256 LANESx1024

lane 0
lane 1

lane 0PE1

PE0

Amount of 
work

Lanes



Proposed	solution:	MASR
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Work	stealing	for	load	balancing

Problem

Area

Solution

Logic	centric	sparse	encoding

Optimizes

Scalable	sparse	encoding	architecture
Accelerator	to	exploit	parallelism

Performance	
Area
Energy

Performance

Over	state-of-the-art,	MASR	provides:
3x area					 3x energy	 2x	perf

Irregular,	sparse	computation
makes	parallelism	hard

High	performance	with	
parallelism	and	irregularity	is	
hard

Large	memory	footprint	– static	
weights	and	dynamic	activations



Scalable	acceleration	of	sparse	RNNs	is	possible!
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Stay	tuned…
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MASR:	A	Modular	Accelerator	for	Sparse	RNNs

Udit	Gupta,	Brandon	Reagen,	
Lillian	Pentecost,	Marco	Donato,	Thierry	Tambe
Alexander	M.	Rush,	Gu-Yeon Wei,	David	Brooks

ugupta@g.harvard.edu

Thanks	for	listening!

Parallelism

Sparsity


