
MASR:	A	Modular	Accelerator	
for	Sparse	RNNs

Udit	Gupta,	Brandon	Reagen,	
Lillian	Pentecost,	Marco	Donato,	Thierry	Tambe
Alexander	M.	Rush,	Gu-Yeon Wei,	David	Brooks

Harvard	University



In	this	talk
Parallelism

Sparsity



In	this	talk

3

Parallelism

Sparsity

Custom	sparse	encoding



In	this	talk

4

Sparsity	+	
Parallelism

Area Energy Perf.

Parallelism

Sparsity

Custom	sparse	encoding



In	this	talk

5

Sparsity	+	
Parallelism

Area Energy Perf.

Parallelism

Sparsity

Custom	sparse	encoding



RNNs	can	revolutionize	interactions	with	tech

6

Applications Model

Recurrent	Neural	
Networks



Must	deploy	RNNs	onto	resource	constrained	HW

7

Hardware	Platforms

Recurrent	Neural	
Networks

Applications Model



8

High compute
footprint

High energy	
footprint

Large memory
footprint

Tens	of	MBs	
for	ASR

Tens	of	GFLOPs
for	ASR

Billions	of	memory	accesses
for	ASR

RNNs	levy	high	inference	cost



Inference	cost	of	ASR	RNNs

9

Speech Inputs
(161, 248)

FC (29)

Transcribed Speech

RNN (800)

RNN (800)

RNN (800)

RNN (800)

RNN (800)

Conv2D

DeepSpeech 2 Topology

Inputs	are	represent	as	a	sequence of	waveforms	



Inference	cost	of	ASR	RNNs

10

Speech Inputs
(161, 248)

FC (29)

Transcribed Speech

RNN (800)

RNN (800)

RNN (800)

RNN (800)

RNN (800)

Conv2D

DeepSpeech 2 Topology

Inputs	are	represent	as	a	sequence of	waveforms	



Inference	cost	of	ASR	RNNs

11

Speech Inputs
(161, 248)

FC (29)

Transcribed Speech

RNN (800)

RNN (800)

RNN (800)

RNN (800)

RNN (800)

Conv2D

DeepSpeech 2 Topology

Inputs	are	represent	as	a	sequence of	waveforms	



Inference	cost	of	ASR	RNNs

12

Speech Inputs
(161, 248)

FC (29)

Transcribed Speech

RNN (800)

RNN (800)

RNN (800)

RNN (800)

RNN (800)

Conv2D

DeepSpeech 2 Topology

Inputs	are	represent	as	a	sequence of	waveforms	



Inference	cost	of	ASR	RNNs

13

Speech Inputs
(161, 248)

FC (29)

Transcribed Speech

RNN (800)

RNN (800)

RNN (800)

RNN (800)

RNN (800)

Conv2D

DeepSpeech 2 Topology

Over	98%	of	parameters	found	in	recurrent	layers
(over	30	million,	50MB)

Inputs	are	represent	as	a	sequence of	waveforms	

RNN
CNN



RNNs	cost	scales	with	input	length	(timesteps)

14



RNNs	cost	scales	with	input	length	(timesteps)

15

With	increasing	number	of	timesteps:
- Number	of	matrix-vector	operations	increases	(FLOPs)	
- Activation	storage	increases	(area)

Increasing	number	of	timesteps



RNNs	pose	unique	challenges

16

Solutions	for	CNNs	
optimize	static	weights

AlexNet
VGG16

ResNet34



RNNs	pose	unique	challenges

17

Solutions	for	CNNs	
optimize	static	weights

RNN	memory	consumption	
dominated	by	dynamic	activation	

requiring	unique	solutions	

AlexNet
VGG16

DeepSpeech2
ResNet34



Reduces	weight	footprint	by	3x

Does	not	compress	activations	(up	to	3x
savings)

Limitations	of	current	sparse	DNN	accelerators

18

EIE:	Efficient	Inference	Engine on	Compressed	DNNs
Song	Han,	et.	al.	

ISCA,	2016,	citation	count:	909



Reduces	weight	footprint	by	3x

Does	not	compress	activations	(up	to	3x
savings)

Limitations	of	current	sparse	DNN	accelerators

19

EIE:	Efficient	Inference	Engine on	Compressed	DNNs
Song	Han,	et.	al.	

ISCA,	2016,	citation	count:	909

EIE

sparse	encoding
overhead

weights

activations

Does	not	scale (over	2x savings	at	high	
parallelism)



Proposed	solution:	MASR

20

Problem Solution

Logic	centric	sparse	encodingLarge	memory	footprint	– static	
weights	and	dynamic	activations



Proposed	solution:	MASR

21

Irregular,	sparse	computation
makes	parallelism	hard

Problem Solution

Logic	centric	sparse	encoding

Scalable	sparse	encoding	architecture
Accelerator	to	exploit	parallelism

Large	memory	footprint	– static	
weights	and	dynamic	activations



Proposed	solution:	MASR

22

Irregular,	sparse	computation
makes	parallelism	hard

Work	stealing	for	load	balancing

Problem Solution

Logic	centric	sparse	encoding

Scalable	sparse	encoding	architecture
Accelerator	to	exploit	parallelism

High	performance	with	
parallelism	and	irregularity	is	
hard

Large	memory	footprint	– static	
weights	and	dynamic	activations



Proposed	solution:	MASR

23

Work	stealing	for	load	balancing

Problem Solution

Logic	centric	sparse	encoding

Scalable	sparse	encoding	architecture
Accelerator	to	exploit	parallelism

Irregular,	sparse	computation
makes	parallelism	hard

High	performance	with	
parallelism	and	irregularity	is	
hard

Large	memory	footprint	– static	
weights	and	dynamic	activations



Encoding	techniques	to	exploit	sparsity
Memory	centric

24

Current	state-of-the-art
Song	Han,	et.	al.	ISCA,	2016

0 0
0 0

0 0 0

Weight Matrix Compressed Sparse Row

2 3 0 1 2
2 2 1 Row pointers

Col pointers
Weights



Encoding	techniques	to	exploit	sparsity
Memory	centric

25

Pressures	memory	system	(2	pointers/1	weight)

Static weight	encoding	computed	offline
Activations	generated	at	run-time;	uncompressed

Current	state-of-the-art
Song	Han,	et.	al.	ISCA,	2016

0 0
0 0

0 0 0

Weight Matrix Compressed Sparse Row

2 3 0 1 2
2 2 1 Row pointers

Col pointers
Weights



Encoding	techniques	to	exploit	sparsity
Memory	centric

26

Logic	centric

Current	state-of-the-art
Song	Han,	et.	al.	ISCA,	2016 Proposed	solution

Pressures	memory	system	(2	pointers/1	weight)

Static weight	encoding	computed	offline
Activations	generated	at	run-time;	uncompressed

MASR binary mask 
encoding

0 0 1 1
1 1 0 0
0 0 1 0

+				Logic0 0
0 0

0 0 0

Weight Matrix Compressed Sparse Row

2 3 0 1 2
2 2 1 Row pointers

Col pointers
Weights

Sparse	encoding	
binary	mask



Logic	centricMemory	centric

27

Relieves	memory	pressure	(single pointer)

Compute	sparse	address	at	run-time!
Weights	and	activations	are	compressed

MASR binary mask 
encoding

0 0 1 1
1 1 0 0
0 0 1 0

+				Logic

Encoding	techniques	to	exploit	sparsity

Current	state-of-the-art
Song	Han,	et.	al.	ISCA,	2016 Proposed	solution

Pressures	memory	system	(2	pointers/1	weight)

Static weight	encoding	computed	offline
Activations	generated	at	run-time;	uncompressed

0 0
0 0

0 0 0

Weight Matrix Compressed Sparse Row

2 3 0 1 2
2 2 1 Row pointers

Col pointers
Weights

Sparse	encoding	
binary	mask



MASR’s	logic	centric	sparse	encoding

Weights

Activations

Compute	address of	non-zero weight	and	activation	stored	in	compressed	format

28

0 0 0.1 -.3

0.1 0.5 0 1.2

0 0 1 1

1 1 0 1

Mask

Mask

Compressed

Compressed

0.1 -.3

0.1 0.5 1.2



MASR’s	logic	centric	sparse	encoding

Weights

Activations

Compute	address of	non-zero weight	and	activation	stored	in	compressed	format

29

0 0 0.1 -.3

0.1 0.5 0 1.2

0 0 1 1

1 1 0 1

Mask

Mask

Compressed

Compressed

0.1 -.3

0.1 0.5 1.2



AND 0 0 0 1

0 0 1 1

1 1 0 1

Weight Mask

Act. Mask

LNZD

PopCount

PopCount

Weight: 1

Act: 2

Work Mask

Sparse 
Address

1

2

3
3

MASR’s	logic	centric	sparse	encoding

Weights

Activations

Compute	address of	non-zero weight	and	activation	stored	in	compressed	format

Decoding	non-zero	weight	and	activations

30

1. Compute	when	
weight	and	
activation	are	both	
non-zero

0 0 0.1 -.3

0.1 0.5 0 1.2

0 0 1 1

1 1 0 1

Mask

Mask

Compressed

Compressed

0.1 -.3

0.1 0.5 1.2



AND 0 0 0 1

0 0 1 1

1 1 0 1

Weight Mask

Act. Mask

LNZD

PopCount

PopCount

Weight: 1

Act: 2

Work Mask

Sparse 
Address

1

2

3
3

MASR’s	logic	centric	sparse	encoding

Weights

Activations

Compute	address of	non-zero weight	and	activation	stored	in	compressed	format

Decoding	non-zero	weight	and	activations

31

1. Compute	when	
weight	and	
activation	are	both	
non-zero

2. Find	next	non-zero	
pair	(leading	non-
zero	detect)

0 0 0.1 -.3

0.1 0.5 0 1.2

0 0 1 1

1 1 0 1

Mask

Mask

Compressed

Compressed

0.1 -.3

0.1 0.5 1.2



AND 0 0 0 1

0 0 1 1

1 1 0 1

Weight Mask

Act. Mask

LNZD

PopCount

PopCount

Weight: 1

Act: 2

Work Mask

Sparse 
Address

1

2

3
3

MASR’s	logic	centric	sparse	encoding

Weights

Activations

Compute	address of	non-zero weight	and	activation	stored	in	compressed	format

Decoding	non-zero	weight	and	activations

32

1. Compute	when	
weight	and	
activation	are	both	
non-zero

2. Find	next	non-zero	
pair	(leading	non-
zero	detect)

3. Evaluate	address	
of	non-zero	weight	
and	activation	
(population	count)

0 0 0.1 -.3

0.1 0.5 0 1.2

0 0 1 1

1 1 0 1

Mask

Mask

Compressed

Compressed

0.1 -.3

0.1 0.5 1.2



AND 0 0 0 1

0 0 1 1

1 1 0 1

Weight Mask

Act. Mask

LNZD

PopCount

PopCount

Weight: 1

Act: 2

Work Mask

Sparse 
Address

1

2

3
3

MASR’s	logic	centric	sparse	encoding

Weights

Activations

Compute	address of	non-zero weight	and	activation	stored	in	compressed	format

Decoding	non-zero	weight	and	activations

33

1. Compute	when	
weight	and	
activation	are	both	
non-zero

2. Find	next	non-zero	
pair	(leading	non-
zero	detect)

3. Evaluate	address	
of	non-zero	weight	
and	activation	
(population	count)

0 0 0.1 -.3

0.1 0.5 0 1.2

0 0 1 1

1 1 0 1

Mask

Mask

Compressed

Compressed

0.1 -.3

0.1 0.5 1.2



0 0 0.1 -.3

0.1 0.5 0 1.2

0 0 1 1

1 1 0 1

Mask

Mask

Compressed

Compressed

0.1 -.3

0.1 0.5 1.2

MASR’s	logic	centric	sparse	encoding

Weights

Activations

Can	compute	address	of	sparse	weight/activation	stored	compactly	in	memory!

34

Takeaways

3x	memory	
savings	from	
weight	
compression

3x additional	
memory	savings	
from	activation	
compression

0 0 0.1 -.3

0.1 0.5 1.2 0

0 0 1 1

1 1 1 0

Weights

Activations

Mask

Mask

Compressed

Compressed

0.1 -.3 0

0.1 0.5 1.2 0

AND 0 0 1 0

0 0 1 1

1 1 1 0

Weight Mask

Act. Mask

LNZD

PopCount

PopCount

Weight: 0

Act: 2

0

Work Mask

Sparse 
Address

1

2

3



Proposed	solution:	MASR

35

Work	stealing	for	load	balancing

Problem

Area

Solution

Logic	centric	sparse	encoding

Optimizes

Scalable	sparse	encoding	architecture
Accelerator	to	exploit	parallelism

Irregular,	sparse	computation
makes	parallelism	hard

High	performance	with	
parallelism	and	irregularity	is	
hard

Large	memory	footprint	– static	
weights	and	dynamic	activations



Memory	centric	encodings	do	not	scale

36

Col
pointer

Row 
pointers Weights

Weight

Activation

x+ Output

Song	Han,	et.	al.	ISCA,	2016



Memory	centric	encodings	do	not	scale

37

ColRow 
pointers

weight

Weight

Activation

x+ Output

ColRow 
pointers

weight

Weight

Activation

x+ Output

ColRow 
pointers

weight

Weight

Activation

x+ Output

Song	Han,	et.	al.	ISCA,	2016



Memory	centric	encodings	do	not	scale

38

ColRow 
pointers

weight

Weight

Activation

x+ Output

ColRow 
pointers

weight

Weight

Activation

x+ Output

ColRow 
pointers

weight

Weight

Activation

x+ Output

Duplicating	memory	
is	expensive!

Song	Han,	et.	al.	ISCA,	2016



Proposed:	parallelize	logic	centric	encoding

39

Weight
Mask Weights Weight

Activation

x+ Output

Act. 
Mask

AND LNZD PopCount

Act.

Single	MASR	Lane



Proposed:	parallelize	logic	centric	encoding

40

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.



Proposed:	parallelize	logic	centric	encoding

41

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

mask
Weights Weight

Activation

x+ Output
Mask

AND LNZD PopCount

Act.

Duplicating	logic	is	cheap!



MASR’s	sparse	encoding	improves	scalability

Takeaways

Scalable sparse	encoding	and	architecture
• Enables	highly	parallel	execution	with	varying	number	of	MACs/PEs

42

EIE MASR

Weight	mask

Weights

Row	
pointer

Activations

Memory	centric Logic	centric
Number	of	MACs/PEs



Proposed	solution:	MASR

43

Work	stealing	for	load	balancing

Problem

Area

Solution

Logic	centric	sparse	encoding

Optimizes

Scalable	sparse	encoding	architecture
Accelerator	to	exploit	parallelism

Irregular,	sparse	computation
makes	parallelism	hard

High	performance	with	
parallelism	and	irregularity	is	
hard

Large	memory	footprint	– static	
weights	and	dynamic	activations



Parallelism	within	matrix-vector	multiplication

44

w7,1 w7,3 w7,4w7,2

PE1 PE2PE0

PE4 PE5 PE7

lane 0
lane 1
lane 2
lane 3

x0

x

Activations
register file

w0,1 w0,3 w0,4w0,2

w7,13 w7,15w7,16w7,14…

…

x7

…

w0,13 w0,15w0,16w0,14…

Weight matrixInput
 activations

Activations
register file

Activations
register file

Activations
register file

y0…

y16

…

Output
 activations

=

In
pu

t a
nd

 h
id

de
n-

st
at

e 
SR

AM
s

Activations
register file

Activations
register file

PE6

+ Output 
register 

file

Input	
neuron	
parallelism

Output	neuron	parallelism



MASR	micro-architecture:	Parallelizing	across	input	
and	output	neurons

Composed	of	2D	array	of	lanes

• Horizontal	lanes	parallelize	output	neurons

• Vertical	lanes	parallelize	input	neurons

PEs	composed	of	neighboring	horizontal	lanes

• Share	activation	register	file	(area,	power,	load	time)

• Private	weight	and	mask	SRAM	within	lane	
(decoupled	to	enable	high-bandwidth	access)

45

w7,1 w7,3 w7,4w7,2

PE1 PE2PE0

PE4 PE5 PE7

lane 0
lane 1
lane 2
lane 3

Activations
register file

w0,1 w0,3 w0,4w0,2

w7,13 w7,15w7,16w7,14…

w0,13 w0,15w0,16w0,14…

Weight matrix

Activations
register file

Activations
register file

Activations
register file

Activations
register file

Activations
register file

PE6

Output	neuron	parallelism

Input	
neuron	
parallelism



MASR:	design	space	exploration

46

PE1 PE2PE0

PE4 PE5

lane 0
lane 1
lane 2
lane 3

Activations
register file

Activations
register file

Activations
register file

Activations
register file

In
pu

t a
nd

 h
id

de
n-

st
at

e 
SR

AM
s

Activations
register file

Activations
register file

PE6

+ Output 
register 

file

Ve
rti

ca
l P

Es
Horizontal PEs

Lanes
per PE

Ac
tiv

at
io

n 
m

em
or

y 
si

ze
Backend
Queues

Activation register
 width



MASR:	design	space	exploration

47

PE1 PE2PE0

PE4 PE5

lane 0
lane 1
lane 2
lane 3

Activations
register file

Activations
register file

Activations
register file

Activations
register file

In
pu

t a
nd

 h
id

de
n-

st
at

e 
SR

AM
s

Activations
register file

Activations
register file

PE6

+ Output 
register 

file

Ve
rti

ca
l P

Es
Horizontal PEs

Lanes
per PE

Ac
tiv

at
io

n 
m

em
or

y 
si

ze
Backend
Queues

Activation register
 width



MASR:	design	space	exploration

48

PE1 PE2PE0

PE4 PE5

lane 0
lane 1
lane 2
lane 3

Activations
register file

Activations
register file

Activations
register file

Activations
register file

In
pu

t a
nd

 h
id

de
n-

st
at

e 
SR

AM
s

Activations
register file

Activations
register file

PE6

+ Output 
register 

file

Ve
rti

ca
l P

Es
Horizontal PEs

Lanes
per PE

Ac
tiv

at
io

n 
m

em
or

y 
si

ze
Backend
Queues

Activation register
 width

Recurrent	Neural	
Network



MASR:	design	space	exploration

49

PE1 PE2PE0

PE4 PE5

lane 0
lane 1
lane 2
lane 3

Activations
register file

Activations
register file

Activations
register file

Activations
register file

In
pu

t a
nd

 h
id

de
n-

st
at

e 
SR

AM
s

Activations
register file

Activations
register file

PE6

+ Output 
register 

file

Ve
rti

ca
l P

Es
Horizontal PEs

Lanes
per PE

Ac
tiv

at
io

n 
m

em
or

y 
si

ze
Backend
Queues

Activation register
 width

Recurrent	Neural	
Network

Cycle	accurate	
simulation

1GHz 16nmFinFet



MASR:	design	space	exploration

50

PE1 PE2PE0

PE4 PE5

lane 0
lane 1
lane 2
lane 3

Activations
register file

Activations
register file

Activations
register file

Activations
register file

In
pu

t a
nd

 h
id

de
n-

st
at

e 
SR

AM
s

Activations
register file

Activations
register file

PE6

+ Output 
register 

file

Ve
rti

ca
l P

Es
Horizontal PEs

Lanes
per PE

Ac
tiv

at
io

n 
m

em
or

y 
si

ze
Backend
Queues

Activation register
 width

Recurrent	Neural	
Network

Cycle	accurate	
simulation

Design	space	
exploration

1GHz 16nmFinFet



MASR:	Performance,	Energy,	Area	tradeoffs

51

Ar
ea

 (m
m

2 )

Lanesx64 Lanesx256 Lanesx1024

La
te

nc
y 

(m
s)

En
er

gy
 (u

J)

ç

ç

ç

MASR	is	2	orders of	magnitude	faster	than	CPU	

Fits	our	on-chip	area	target	for	mobile	devices



MASR:	Performance,	Energy,	Area	tradeoffs

52

Ar
ea

 (m
m

2 )

Lanesx64 Lanesx256 Lanesx1024

La
te

nc
y 

(m
s)

En
er

gy
 (u

J)

ç

2.9x

1.4x

1.3x

MASR	is	2	orders of	magnitude	faster	than	CPU	

Fits	our	on-chip	area	target	for	mobile	devices

ç

ç



MASR:	Performance,	Energy,	Area	tradeoffs
MASR	is	2	orders of	magnitude	faster	than	CPU	

Fits	our	on-chip	area	target	for	mobile	devices

Ar
ea

 (m
m

2 )

Lanesx64 Lanesx256 Lanesx1024

La
te

nc
y 

(m
s)

En
er

gy
 (u

J)

71%

53

1.3x

2.0x

1.7x Dense Sparse



MASR:	Performance,	Energy,	Area	tradeoffs

Takeaways

Parallelism	can	be	configured	to	target:
High-performance
Energy-efficiency
Area-efficiency

54

Ar
ea

 (m
m

2 )

Lanesx64 Lanesx256 Lanesx1024

La
te

nc
y 

(m
s)

En
er

gy
 (u

J)

Area

Energy

Perf

MASR	is	2	orders of	magnitude	faster	than	CPU

Fits	our	on-chip	area	target	for	mobile	devices



Proposed	solution:	MASR

55

Work	stealing	for	load	balancing

Problem

Area

Solution

Logic	centric	sparse	encoding

Optimizes

Scalable	sparse	encoding	architecture
Accelerator	to	exploit	parallelism

Performance	
Area
Energy

Irregular,	sparse	computation
makes	parallelism	hard

High	performance	with	
parallelism	and	irregularity	is	
hard

Large	memory	footprint	– static	
weights	and	dynamic	activations



Increasing	number	of	parallel	MACs/lanes	from	64	
to	1024	(16x),	improves	performance	by	5.5x

56

Ar
ea

 (m
m

2 )

Lanesx64 Lanesx256 Lanesx1024

La
te

nc
y 

(m
s)

En
er

gy
 (u

J)
A

re
a 

(m
m

2 )

Lanesx64 Lanesx256 Lanesx1024

La
te

nc
y 

(m
s)

En
er

gy
 (u

J)

5.5x

16x

Further	investigating	sources	of	inefficiency



Increasing	number	of	parallel	MACs/lanes	from	64	
to	1024	(16x),	improves	performance	by	5.5x

30% MAC	utilization
Remainder	spent	on	stalls/idles	due	to	load	imbalance

57

Ar
ea

 (m
m

2 )

Lanesx64 Lanesx256 Lanesx1024

La
te

nc
y 

(m
s)

En
er

gy
 (u

J)
A

re
a 

(m
m

2 )

Lanesx64 Lanesx256 Lanesx1024

La
te

nc
y 

(m
s)

En
er

gy
 (u

J)

5.5x

16x

Further	investigating	sources	of	inefficiency

Lanesx64 Lanesx256 Lanesx1024

M
ac

 u
til

iza
tio

n 
(%

)

30%



Increasing	number	of	parallel	MACs/lanes	from	64	
to	1024	(16x),	improves	performance	by	5.5x

30% MAC	utilization
Remainder	spent	on	stalls/idles	due	to	load	imbalance

Some	lanes	get	1.5x more	work	(non-zeros)	to	
process

58

Ar
ea

 (m
m

2 )

Lanesx64 Lanesx256 Lanesx1024

La
te

nc
y 

(m
s)

En
er

gy
 (u

J)
A

re
a 

(m
m

2 )

Lanesx64 Lanesx256 Lanesx1024

La
te

nc
y 

(m
s)

En
er

gy
 (u

J)

5.5x

16x

Further	investigating	sources	of	inefficiency

Lanesx64 Lanesx256 Lanesx1024

M
ac

 u
til

iza
tio

n 
(%

)

30%



Dynamic	load	balancing

59

Lanes	that	finish	early	can	steal	work	from	neighboring	lanes	that	are	straggling	behind

lane 0
lane 1

lane 0PE1

PE0

Amount of 
work

Lanes



Dynamic	load	balancing

60

Horizontal	load	balancing	requires	
duplicating	weights

Lanes	that	finish	early	can	steal	work	from	neighboring	lanes	that	are	straggling	behind

lane 0
lane 1

lane 0PE1

PE0

Amount of 
work

Lanes



Dynamic	load	balancing

61

Horizontal	load	balancing	requires	
duplicating	weights

Vertical	load	balancing	requires	
duplicating	weights	and	activation	
register	files

Lanes	that	finish	early	can	steal	work	from	neighboring	lanes	that	are	straggling	behind

lane 0
lane 1

lane 0PE1

PE0

Amount of 
work

Lanes



Dynamic	load	balancing

62

Vertical	load	balancing	better	targets	load	imbalance	in	dynamic	activations
Up	to	1.9x speedup	(LANESx1024)
Requires	duplicating	10%	weight	storage	and	activation	register	files

1.9x

Perfect	parallelism	(theoretical)

LANESx64 LANESx256 LANESx1024

lane 0
lane 1

lane 0PE1

PE0

Amount of 
work

Lanes



Proposed	solution:	MASR

63

Work	stealing	for	load	balancing

Problem

Area

Solution

Logic	centric	sparse	encoding

Optimizes

Scalable	sparse	encoding	architecture
Accelerator	to	exploit	parallelism

Performance	
Area
Energy

Performance

Over	state-of-the-art,	MASR	provides:
3x area					 3x energy	 2x	perf

Irregular,	sparse	computation
makes	parallelism	hard

High	performance	with	
parallelism	and	irregularity	is	
hard

Large	memory	footprint	– static	
weights	and	dynamic	activations



Scalable	acceleration	of	sparse	RNNs	is	possible!

64

Stay	tuned…



65

MASR:	A	Modular	Accelerator	for	Sparse	RNNs

Udit	Gupta,	Brandon	Reagen,	
Lillian	Pentecost,	Marco	Donato,	Thierry	Tambe
Alexander	M.	Rush,	Gu-Yeon Wei,	David	Brooks

ugupta@g.harvard.edu

Thanks	for	listening!

Parallelism

Sparsity


