
MASR: A Modular Accelerator for Sparse RNNs

Udit Gupta, Brandon Reagen, Lillian Pentecost, Marco Donato, Thierry Tambe,

Alexander M. Rush, Gu-Yeon Wei, David Brooks

ugupta@g.harvard.edu

Abstract—Recurrent neural networks (RNNs) are becoming
the de facto solution for speech recognition. RNNs exploit long-
term temporal relationships in data by applying repeated, learned
transformations. Unlike fully-connected (FC) layers with single
vector matrix operations, RNN layers consist of hundreds of
such operations chained over time. This poses challenges unique
to RNNs that are not found in convolutional neural networks
(CNNs) or FC models, namely large dynamic activation. In this
paper we present MASR, a principled and modular architecture
that accelerates bidirectional RNNs for on-chip ASR. MASR is
designed to exploit sparsity in both dynamic activations and
static weights. The architecture is enhanced by a series of
dynamic activation optimizations that enable compact storage,
ensure no energy is wasted computing null operations, and
maintain high MAC utilization for highly parallel accelerator
designs. In comparison to current state-of-the-art sparse neural
network accelerators (e.g., EIE), MASR provides 2× area 3×
energy, and 1.6× performance benefits. The modular nature
of MASR enables designs that efficiently scale from resource-
constrained low-power IoT applications to large-scale, highly
parallel datacenter deployments.

I. INTRODUCTION

Automatic speech recognition (ASR) is at the foundation

of many popular services, streamlining the human-machine

interface [1], [2]. Recent advances in ASR have come from

replacing traditional methods based on Gaussian Mixture

Models and Hidden Markov Models with deep learning, namely

recurrent neural networks (RNNs). RNNs learn relationships

in time series data by establishing a temporal context called

the hidden state—partial predictions between time-adjacent

neurons that improve the interpretation of sequential data

(e.g., spoken utterances). Today, RNNs are the state-of-the-

art solution for highly-accurate ASR [3], [4], [5], [6].

The hidden state of RNNs introduces a unique memory

consumption problem that is addressed in this paper. Figure 1

compares the fraction of memory used by activations and

weights across four deep learning models. Well-known, CNN-

based image classification models devote most of their memory

resources to storing weights. In contrast, nearly 60% of

the memory needed for Deep Speech 2 (DS2) —a state-

of-the-art, RNN-based ASR model—is for activations (both

inputs and hidden states), which consumes significant on-

chip storage. This does not preclude the issue of weights

also consuming significant memory (14MB for Deep Speech

2). These memory requirements are a result of ASR RNNs

often using bidirectional layers — inputs to each layer are

processed twice (once forwards in time and once backwards)

and work over hundreds to thousands of time steps (i.e., 1 to

30 seconds) [7]. The hidden state size scales with the number

Activation Memory
(Input + Hidden States)

2MB
31MB
7MB

15MB

Fig. 1: The memory footprint of activations is higher in

Deep Speech 2 (DS2), an ASR RNN, than in standard CNNs.

Thus, to reduce storage costs of ASR RNNs, memory system

optimizations are needed for both activations and weights.

of time steps, and separate weights are maintained for forward

and backward passes.

Aggressive optimizations are needed to reduce the memory

costs of storing both activations and weights, as well as the

heavy processing load. One promising solution is leveraging

sparsity for storage and computational efficiency. However,

while many techniques for weight pruning and compression

have been proposed, relatively little has been done to compress

activations. To improve computational efficiency, inferences

can be computed directly on the sparse encoding. Sparse

processing allows the hardware to elide all null operations

at the expense of introducing irregularity. Irregularity leads

to hardware inefficiency from low utilization, and the optimal

sparse encoding is application dependent. In addition to not

considering activation sparsity, existing, CNN-centric solutions

[8], [9], [10], [11] are either not applicable to RNNs or perform

poorly. Enabling ubiquitous ASR requires accelerating RNNs

with algorithm-architecture co-design for sparse storage and

efficient execution.

This paper presents MASR: A modular accelerator to effi-

ciently process sparse RNNs. Through algorithm-architecture

co-design, MASR achieves high hardware utilization while

never wasting area nor energy on superfluous computation.

To demonstrate the efficacy of the proposed technique, we

start by aggressively optimizing our baseline RNN with

knowledge distillation, language modeling, weight pruning,

and quantization. The key research contributions of MASR

fall into three categories: a hardware accelerator that exploits

sparsity in both weights and activations to skip null values in

execution and storage, a co-designed sparse encoding technique

for both activations and weights that enables highly parallel

architectures, and a mechanism for dynamic load balancing to

maximize hardware utilization.

Sparse ASR RNN accelerator Algorithmic optimizations
(i.e., knowledge distillation) and MASR’s co-designed micro-

1

2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00009

TABLE I: Comparing MASR to related work in terms of

support for sparse execution and storage running RNNs.

Sparse Weight Sparse Act. Dyn. Load
Exec. Storage Exec. Storage Balancing

E-PUR [13]
Minerva [14] x

SparseNN [14] x
Camb-X [10] x x
ESE/EIE [8] x x x

MASR x x x x x

architecture exploit sparsity in weights and activations leading
to improved performance, area, and energy by 14×, 2×, and
15× compared to a dense ASR RNN baseline.

In order to reduce storage and computational burdens of ASR

RNNs, activations must be sparse. However, unlike CNNs, RNN

activations (inputs and hidden states) are not typically sparse. To

achieve hidden state sparsity we use knowledge distillation [12]

to train RNNs with ReLU, at no loss in accuracy compared

to GRU baselines with tanh. Furthermore, we maintain input

sparsity across layers by refactoring the batch normalization

operation. These modifications expose sufficient sparsity in

RNNs to co-design our sparse activation-weight encoding.

Sparse encoding MASR’s low-cost and scalable sparse
encoding technique, provides a 2× area, 3× energy, and 1.6×
performance benefit relative to a start-of-the-art sparse DNN
accelerator [8].

MASR’s sparse encoding format is co-designed with the

underlying architecture to address both compute and storage

bottlenecks. Existing sparse encodings, in addition to not

compressing activations, exhibit high meta-data costs stemming

from encoding overheads. MASR proposes a binary-mask

sparse encoding scheme for both weights and activations. In

storing bits rather than pointers, MASR replaces expensive

memory addressing with cheap bit-wise operations.

Dynamic load balancing MASR dynamically balances load
from the irregular distribution of non-zero activations to
improve performance by up to 30% and achieve high MAC-
utilization across a wide range of parallel design points.

Irregularity introduced by sparsity can lead to poor hardware

utilization [10], [15], [16]. MASR is designed to maximize

utilization by, (1) considering both intra- and inter-neuron

parallelism, and (2) employing a decoupled pipeline to separate

the irregularity from sparsity from the computation of partials.

Once work is issued to the backend, the pipeline does not

stall, regardless of the sparsity pattern. The remaining source

of low utilization arises from load imbalance — pipelines with

more sparsity complete before others. To improve hardware

utilization we propose a dynamic load balancing technique to

re-distribute activations at run-time with negligible area and

energy overheads.

II. RELATED WORK

Accelerating ASR RNNs Deep neural networks entail a

general class of machine learning models that have been

deployed across a wide set of applications and platforms [15],

[17], [18], [19]. Given their ability to achieve state-of-the-art

EIE MASR

Row
Pointers

Col Pointers

Activations

Weights

Weight Mask

Activation Mask
Activations

0 0 .3 -.2 0 0
.1 .2 0 0 0 -.3
0 0 -.4 0 .7 0
0 0 0 .8 0 0

.3 -.2

.1 .2
-.4 .7
.8

-.3

Weight Matrix Compact Values

0 0 1 1 0 0
1 1 0 0 0 1
0 0 1 0 1 0
0 0 0 1 0 0

2 3
0 1
2 4
3

5
0 2 5 7 8

Compressed Sparse Row (EIE)BitMask (MASR)
Pushes complexity to logic

Row pointers

Col pointers

1

2

2

Complexity in
memory

Fig. 2: Compared to compressed sparse row encoding (e.g.,

EIE [8]), MASR’s bit-mask encoding pushes the complexity

in sparse encoding away from storing pointers to logic. While

storage for costly row pointers in EIE scales with the number

of PEs, MASR’s sparse encoding storage overhead is constant

— providing scalability.

accuracy in a broad range of applications, DNNs have gained

a lot of attention from the architecture community. However,

much of the effort has been devoted to optimizing DNNs with

only FC and CNN layers [8], [9], [10], [11], [13], [20], [21],

[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32],

[33], [34]. RNNs, used widely in ASR and natural language

processing, pose unique challenges. For instance, activations

(inputs and hidden-states) generated at run-time comprise a

higher fraction of the memory consumption in RNNs than in

FC/CNNs (Figure 1).

Beyond accelerators for DNNs and CNNs, other work has

investigated RNNs, and search algorithms for ASR and machine

translation [31], [35], [36], [37], [38], [39], [40]. Shown in

Table I, E-PUR [13] provides a hardware accelerator that

maximizes weight locality in dense RNNs. Similarly, the

authors in [41], [42], [43] leverage the temporal locality of

dense RNNs to accelerate them on FPGAs. In contrast, MASR

exploits sparsity in both weights and activations to further

improve performance, area, and energy efficiency.

To accelerate ASR, the authors of [44] design a memory-

efficient Viterbi search accelerator. This targets language

models that are run after processing all timesteps and layers

in the RNN. However, with even large language models, state-

of-the-art ASR models [3], [45] spend over 90% of their

execution time on the RNNs (Section III-C), making RNNs

the performance bottleneck and the focus of this paper.

Exploiting sparsity for hardware efficiency Table I com-

pares MASR to previous hardware accelerators based on their

2

ht-1 ht ht+1

gt-1 gt gt+1

xt-1 xt xt+1

+ + +

yt-1 yt yt+1

Wx Wx WxVx Vx Vx

Wh Wh

VhVh

ReLU ReLU ReLU

ReLUReLU ReLU

Batch Norm Batch Norm Batch Norm

+ +

++

+0

+ 0

Fig. 3: Bidirectional RNN layer. xt , ht , and gt are the input

and hidden states at time step t. Wx, Wh, Vx, and Vh are the

forward and backward weights.

support for sparsity in weights and activations, and dynamic

load balancing. Typically, previous work either exploits sparsity

in weights or activations, but not both [10], [11], [13], [14],

[22], [46], [47] leaving key performance, area, and energy

savings on the table. DNN accelerators that do exploit sparsity

in both weights and activations use dataflows and sparse

encodings specific to CNNs [9], [23]. Thus, to highlight the

key contributions made in this paper, we provide in depth

comparisons to EIE [8].

While EIE [8] exploits sparsity in both weights and acti-

vations, it does not store activations in a compressed format.

Furthermore, EIE uses compressed-sparse row (CSR) encoding.

As shown in Figure 2, CSR maintains separate row and column

pointers to track non-zero weights. Row-pointer storage scales

with the number of hardware PEs, levying high memory costs

in more parallel architectures. In contrast, MASR uses a simpler

sparse encoding that pushes the complexity of computing

addresses for sparse parameters away from memory and into

low-cost logic. This facilitates scaling the architecture to highly

parallel designs (see Section IV-B for details).

Load balancing for sparse neural networks Exploiting

sparsity in weights and activations comes at the expense of

introducing irregularity into an otherwise regular workload.

Irregularity leads to low hardware utilization from load im-

balance. Prior work considers pruning to statically balance

weight sparsity [47]. However, we find that the main source of

imbalance in RNNs is the distribution of non-zero activations.

Thus, MASR exploits a novel dynamic load balancing technique

that balances non-zero activations at run-time (Section VIII).

III. AUTOMATIC SPEECH RECOGNITION

Automatic speech recognition (ASR) transcribes an input x
into text. The input speech is represented as a discrete time

series of continuous feature vectors x1, . . . ,xT derived from a

spectrogram of power normalized audio clips. Current state-

of-the-art models for ASR rely heavily on deep learning for

acoustic modeling [48], [49]. Recently, RNNs have become

the standard end-to-end deep learning approach for ASR [3],

[4]. This section first provides an overview of RNNs and how

they are used in ASR. We then simplify the neural networks

to establish an efficient baseline RNN for ASR.

TABLE II: DS2 [52] model before optimizations (21.9 WER)

Convolution Bidirectional GRU Fully-connected

Layers 2 5 1

Parameters 250K 38M 20K

A. Recurrent Neural Networks

Recurrent layers build context in time series data using

hidden states to learn feature patterns in long-term data. There

are three popular recurrent layers: vanilla RNN (hereafter

referred to as RNN), GRU [50], and LSTM [51]. They differ

in how new inputs are used to update hidden state. RNNs use

two sets of weights: one for inputs and one for hidden states.

GRUs and LSTMs expand upon RNNs with additional gated

skip connections. These can improve accuracy by increasing

expressiveness; however, the additional connections increase

model size, where GRUs and LSTMs have 3× and 4× more

weights than RNNs, respectively.

Recurrent layers can either be unidirectional or bidirectional.

Unidirectional layers update hidden states based entirely on

information from previous time steps. Bidirectional layers

maintain two separate hidden states, one based on inputs

from the past and one based on inputs from the future. While

bidirectional layers can achieve higher accuracy, they require

twice the number of parameters and operations.

Figure 3 illustrates a bidirectional RNN layer with ReLU

activation and batch normalization. From the bottom, first a

time-series input xt is transformed by matrices Wx and Vx to

produce input intermediates (red). Hidden states ht−1 and gt+1

are transformed by matrices Wh and Vh, respectively, to produce

forward and backward hidden intermediates (blue). New hidden

states ht and gt are then computed by passing the sum of the

input and hidden intermediates through ReLU. The sum of

these hidden states is output as yt .

B. Target Model: Deep Speech 2

Deep Speech 2 (DS2) [3] is an industry and academic

standard speech-to-text benchmark [52]. It directly maps input

speech spectrograms to characters. Table II describes the

architecture using an implementation based on GRUs. First,

a pair of CNN layers extract relevant features from the input

spectrogram and reduce the length. Next, bidirectional recurrent

layers, which can either be GRU or RNN layers [3], learn time-

series context. Finally, a FC layer makes output predictions,

a probability distribution over characters at each time step.

This distribution can be combined with a language model to

produce better transcribed text.

Our models for ASR are trained using the open-source

DS2 implementation in PyTorch [53], [54], [55] on the open-

source LibriSpeech corpus [7]. The GRU network (described

in Table II) has a word-error rate (WER) of 21.9, comparable

to DS2 networks with a greedy decoder [3] and the target for

standardized speech-to-text benchmarks [52]. The GRU layers

make up over 99% of the model’s parameters. Thus, this paper

focuses on optimizing the recurrent layers of DS2.

3

Distill
RNN

Distill
GRU

GRU
(teacher)

3x

Acoustic
Model

Beam = 8

Beam = 128
Beam = 512

MASR LM

Fig. 4: Left: After distillation, a 5-layer bidirectional RNN

reaches the accuracy of a 5-layer bidirectional GRU reducing

the number of parameters by 3×. Right: Language modeling

reduces the WER from 22 down to 14.5 with a beam-width of

128. Language modeling accounts for only 10% of CPU time.

C. An Efficient RNN Baseline

MASR builds on a very efficient baseline design that includes

several previously-proposed optimization techniques to improve

performance, on-chip area, and energy costs of DNNs. These

techniques—knowledge distillation, language modeling, weight

pruning, and quantization—were adapted for ASR RNNs.

Knowledge Distillation is a technique used to train a

smaller, less complex student network to mimic the predictions

of a large, pre-trained teacher network by penalizing it for

diverging from the teacher’s scores [12]. The teacher network

is the 5-layer bidirectional GRU, shown in Table II, while the

student models are a 4-layer GRU and a 5-layer RNN. Using

distillation alone is insufficient to recover the baseline accuracy

of the teacher network. Instead we start with distillation

and then fine-tune for ASR with CTC [55] for 5 epochs.

This combination yields student networks with the same

accuracy as the teacher (Figure 4). Compared to the 5-layer

teacher GRU and a 7-layer RNN (iso-accuracy using traditional

supervised learning), the distilled 5-layer RNN has 3× and

1.4× fewer parameters, respectively. (All recurrent layers have

800 hidden units, wherein weight matrices are 800x800.)

Knowledge distillation—reducing a dense DNNs to smaller

ones —improves performance and energy significantly and

provides immediate benefits on CPUs, GPUs, and specialized

hardware.

Language Modeling is a post-processing step that reduces

the WER by modifying the output of the RNNs (after all layers

and timesteps) based on language semantics and structure [55].

This can be done greedily or using beam search, which

maintains many likely speech-to-text transcriptions (determined

by the beam-width). Figure 4(right) shows the decrease in

WER as we increase the beam width from 1 (greedy) to 512

in increments of power of two. While the execution time for

previous generations of ASR models has been dominated by

the language model [44], this is not the case for newer ones like

DS2. With a beam width of 128, only 10% of the CPU time

is spent on performing beam search; the rest is spent running

the RNN. Furthermore, previous work has proposed specialize

hardware to accelerate beam search by at least 5× [56]. Thus,

for the purposes of this study, we focus on accelerating the

core RNN layers, the main performance bottleneck.

Weight Pruning eliminates less important weights and

transforms dense matrix-vector multiplications to sparse ones.

Pruning is performed by iteratively zeroing and masking out

parameters, based on absolute value, and then retraining the

network [57], [58], [59]. The number of non-zero parameters

can be reduced to 33% in the already distilled RNNs (iso-

accuracy).
Sparse Linear Quantization reduces the storage overheads

of parameters by transforming them from 32-bit floating

point type to reduced precision. By applying simple linear

quantization [8], [9], [22], [47], the pruned and distilled network

can be represented in fixed-point format with 14 bits. However,

after pruning, the remaining non-zero parameters follow a

skewed distribution with either high-negative or high-positive

magnitude. Thus, before applying quantization, we separately

scale the magnitude of the positive and negative weights to

fit within the range [0,1]. This enables further reducing the

precision down to 10 bits without sacrificing accuracy.

TABLE III: Efficient RNN baseline after model optimizations.

Layer Type Activation Layers Params Bitwidth NZ %

Bi-dir RNN ReLU 5 13M 10 33

Together, the above-mentioned optimizations improve per-

formance, area, and energy by 4.2×, 3×, and 8×, respectively.

The parameters for the efficient baseline are shown in Table III.

D. Supporting recurrent networks more generally
While the remainder of this paper focuses on accelerating

the ASR RNN baseline, the key contributions of MASR apply

to recurrent neural networks with weight and activation sparsity

more generally. First, RNNs have crafted various speech

recognition networks, notably transducer (e.g., DS2), seq2seq,

and attention based architectures. Previous work has trained

these architectures with ReLU activated RNNs, enabling the

activation sparsity that MASR exploits [60]. Next, the DS2-style

RNN studied in this paper forms the encoder in multi-stage

ASR networks [60], [61]. Finally, the core micro-architectural

contributions also apply to GRU-based networks with pruned

weights and ReLU non-linearity for sparse activations. Such

ReLU activated GRUs have also been used in transducer,

seq2seq, and attention based speech recognition networks [3],

[60], [62].
In order to optimize this vast design space of recurrent neural

networks, MASR can be configured with a combination of

dynamic and design-time parameters. Dynamic, run-time pa-

rameters include number of hidden-units, number of timesteps,

and whether the RNN is uni-directional or bi-directional (see

Section V for details). Design-time parameters include whether

the network is an RNN or GRU, and the maximum recurrent

network size supported.

IV. OPTIMIZING DYNAMIC ACTIVATIONS

As shown in Figure 1, activations are the primary memory

bottleneck of RNNs. This section presents the methods used to

enforce sparsity in activations and the proposed sparse encoding

algorithm.

4

Uncompressed
Activation

Start row pointer

End row pointer
Weight column

indices

Identify weights Get weight address

Weights

Read weightRead activation

Activation Mask

Weight Mask

Read sparsity masks Find next work

Leading
 NZ detect

Compute
Address

Population
Count

Weights

Read
weights and activation

Activations

CSR (EIE)

MASR

(a) Block diagram of compressed sparse row encoding (EIE) and
MASR’s bitmask encoding. All memory blocks are in purple.
Compared to CSR, memory centric sparse encoding technique, MASR
proposes using a logic centric sparse encoding technique.

0 0 0.1 -.3

0.1 0.5 1.2 0

0 0 1 1

1 1 1 0

Weights

Activations

Mask

Mask

Compressed

Compressed

0.1 -.3 0

0.1 0.5 1.2 0

AND 0 0 1 0

0 0 1 1

1 1 1 0

Weight Mask

Act. Mask

LNZD

PopCount

PopCount

Weight: 0

Act: 2

0

Work Mask

Sparse
Address

1

2
3

(b) Concrete example of MASR’s sparse encoding. Step 1 determines
the pairs of non-zero weights and activations, to produce the work
mask, using a logical AND. Step 2 computes the next non-zero weight
and activation to fetch from using with a leading non-zero detect.
Finally, step 3 evaluates the address of sparse weights and activations
stored compactly in memory.

Fig. 5: MASR’s sparse encoding compute sparse addresses for

weights and activations in logic using low-cost hardware.

A. Activation sparsification

Sequential processing: The core computation kernels of

RNNs are the matrix-vector multiplications for the input and

hidden states, ht = ReLU(Wxxt +Whht−1). These kernels can be

computed either in parallel or sequentially in time. E-PUR [13]

proposes maximizing weight locality by first computing the

input connections, Wxxt , for all time steps in parallel, followed

by the recurrent connections. Even with aggressive 10-bit

quantization, this approach requires significant on-chip storage

(1.25MB), outweighing the benefits of reducing on-chip storage

through weight reuse.

MASR computes each time step sequentially. Sequential

processing halves the amount of intermediate values to store.

More importantly, as we use a ReLU activation function, by

sequentially processing each time step intermediates are sparse

and amenable to compression.

Hidden state sparsity To further reduce on-chip storage

requirements for activations, MASR makes use of the sparsity

in inputs and hidden states. Recall that our efficient baseline

model is a 5-layer RNN with ReLU, i.e., max{0,x}. Training

with ReLU causes 80% of the hidden state values to be zero.

Input sparsity Input sparsity is lost due to batch normal-

ization, a regularization technique that makes training larger

models easier, between layers. The operation adjusts and

scales activations to have a zero mean and unit variance:

w7,1 w7,3 w7,4w7,2

PE1 PE2 PE3

PE4 PE5 PE7

lane 0
lane 1
lane 2
lane 3

Input activations

Horizontal PEs

Vertical PEs

Lanes
x0
x1
x2
x3
x4
x5
x6
x7

x

Weight matrix

y0 Output activations… y16…

Activations Activations Activations

ActivationsActivationsActivations

w0,1 w0,3 w0,4w0,2

w7,9 w7,11w7,12w7,10… …

…

Fig. 6: Overall topology of how weight matrices, input

activations, and output activations are split across the MASR

architecture. MASR is organized as a 2D-array of horizontal

(output neuron dimension) and vertical (input neuron dimen-

sion) PEs/lanes.

x =
xsp−μ√

σ2+ε
× γ + β . where xsp represents the sparse inputs

and μ , σ ,ε , γ , and β represent learned parameters. The linear

transform employs non-zero shifts (i.e., μ , β) that map sparse

inputs to dense ones. However, during inference, the linear

transformation can be statically refactored into the next layer’s

weights at zero cost:

x = K0xsp +K1 K0 =
γ√

σ2 + ε
K1 = β − γμ√

σ2 + ε

To refactor this computation, we multiply the next layer’s

weights and biases by the K0 and K1 constants, respectively.

Note that this refactoring is applicable to a broader set of neural

networks that use batch normalization through depth [60], [62].

After refactoring, inputs are on average 60% zeros.

B. Compact activation storage

Operating over compressed weights and activations intro-

duces two challenges: (1) aligning pairs of non-zero weights

and activations, and (2) generating addresses for weights and

activations stored compactly in memory. MASR addresses these

challenges by co-designing a sparse encoding technique for

both activations and weights. As shown in Figure 5a, the sparse

encoding technique uses a combination of bitmasks, a leading

non-zero detects (LNZD), and population counts. We start by

reading the weight and activation bitmasks. The bitmasks track

the sparsity pattern as bit vectors, where non-zero entries are

represented as ones. Next, a bitwise AND between the weight

and activation masks, determines pairs of non-zero weights

and activations and produces the work mask. The ones in the

work mask denote the absolute minimum work to compute. A

LNZD over the work mask determines the index of the next

non-zero weight and activation to fetch from memory. Finally,

population counts of the weight and activation masks, up to

the index specified by the LNZD, evaluates addresses of sparse

weight and activations stored compactly in memory.

5

Activation
Mask

Register Work
Mask

Weight mask
Activation mask

Frontend
 Matching NNZ work

Lane

Leading
NZ Detect

Work
Mask

Weight mask
Activation mask LNZD

amask Popcount

Queue
Pos
Acc

Weight

Activation

Inputs
Mask
SRAM

Hidden
State
SRAM

Inputs
SRAM

Hidden
Mask
SRAM

Biases
SRAM VVAdd Unit

ReLu

Partial Sum
Accumulator

PE PE

Sparse Weights

Lane
0

Compact Activation
Register File

PEMASR

O
ff-

ac
ce

le
ra

to
r m

em
or

y

Activation Mask
Register

Weight Mask
SRAM

Pipeline Stage 1
Find next work

Pipeline Stage 2
Compute Sparse

Address

Activation
Register

Act
sparse
addr

Weights
SRAM

Pipeline Stage 3
Read Weights

and Activations

Pipeline Stage 4
MAC

Neg
Acc

Vert

Lane
N

CTR PopcountLNZD
wmask

+x +

PE

Horiz

PE

PE

PE

Horizontal
Lanes
Per PE

Weight
sparse
addr

Queue

Activation Mask

Activation

Fig. 7: MASR accelerator design highlighting the overall system architecture (left), a PE (center), and a lane (right). Blocks

outlined in red represent tunable micro-architectural parameters swept in the design space exploration. Also in color: activation

registers (blue), and SRAMs for binary masks (purple) and for compressed sparse activations and weights (green).

Example MASR encoding Figure 5b provides a concrete

example of MASR’s sparse encoding. The logical AND between

the weight (0011) and activation (1110) masks produces the

work mask (0010). The LNZD over the work mask points

to index 2. Population counts up to index 2 for the weight

(0011) and activation (1110) masks, compute the weight (0)

and activation (2) addresses, respectively.

Comparing MASR to run-length and CSR The optimal

encoding is application specific and depends on sparsity and

matrix size. Previous sparse DNN accelerators typically use

run-length encoding or CSR [8], [9], [10], [47].

Run-length encoding maintains a step index that stores the

distance between non-zero weights [10]. However, it does

not design for sparsity in activations, leaving key storage,

performance, and energy savings on the table.

CSR considers sparsity in both weights and activations. As

shown in Figure 5a, CSR first reads the non-zero activation

address, encoded using a run-length style step index. The

non-zero activation address then indexes separate row pointer

memories to identify the first and last non-zero weights

corresponding to the given input activation. Finally, the row

pointers are used to read column indices, also encoded using

a run-length style step index, which generate the address of

weights stored compactly. While this approach works well for

model with high sparsity, it suffers from two main drawbacks.

First, null activations are skipped in execution not storage.

Second, while column pointers scale with the number of non-

zero weights, each MAC/PE maintains its own set of row

pointers in CSR. As a result, row pointer memory scales

with the number parallel MACs/PEs. Figure 2 shows that as

the hardware scales from 32 to 512 parallel MACs/PEs, row

pointers dominate the memory footprint.

Low overhead and scalable sparse encoding In contrast,

the memory footprint for MASR’s sparse encoding technique

does not scale with the number of parallel MACs/PEs. This

is a result of eliminating the row pointers and identifying

the necessary sparse weights and activations by computing

the alignment in logic. For instance, MASR computes the

address of non-zero weight and activation pairs in logic, as

shown in Figure 5a. The memory overheads for encoding

sparsity in MASR are limited to binary masks, which are

determined by the size neural network model and not the

number of MACs/PEs. Thus, MASR has a significantly lower

memory footprint compared to previous sparse neural network

accelerators (i.e., EIE, ESE [8], [47]); see Section IX for a

detailed quantitative comparison.

V. THE MASR ARCHITECTURE

As shown in Figure 6, MASR is composed of a 2D-array of

processing elements (PEs)/lanes that evenly split each weight

matrix in the horizontal (i.e., output neurons) and vertical

(i.e., input neurons) dimensions. Each PE is a collection of

lanes that share a local activation register file. Each lane has

its own local weight and weight mask SRAMs that store an

equal portion of the matrix. Compact weight matrices (only

non-zero elements) are loaded from off-accelerator memories

directly into local SRAMs. Output neurons are computed

by accumulating the partial products across lanes in vertical

PEs (i.e., lane 0 in PE0 and P4 determine y0 in Figure 6).

Decoupling the execution across the 32 to 1024 lanes is crucial

for extracting parallelism of the irregular sparse computations

at scale. Figure 7 shows the detailed architecture for MASR,

focusing on RNN computations outlined in Figure 3. The

modular design is centered around the 2D array of PEs and

decoupled, pipelined lanes. In this section, we first explain how

bidirectional RNN computations are mapped to MASR. Then

we show how the underlying lane micro-architecture handles

sparsity in weights and activations.

A. Mapping RNN computations to MASR

To process speech samples, the accelerator runs each layer

of the bidirectional RNN in order. Within each layer, the

accelerator first executes all time steps in the forward direction

and then in the backward direction. Recall that each time step

of the RNN comprises two matrix-vector multiplications, a

vector-vector addition and ReLU: ht = ReLU(Wxxt +Whht−1).
To begin processing a layer, all weights for the forward pass

(Wx and Wh) are loaded from off-accelerator memory into the

compact weight SRAMs within the lanes. Weight SRAMs have

a word width of 10 bits (1 weight each). Likewise, all inputs

(xt) are loaded into compact activation SRAMs, which have a

word width of 60 bits (six activations each).

6

Energy

Area

Fig. 8: Left: Energy-performance and area-performance Pareto frontiers of accelerator designs, sweeping microarchitectural

parameters shown in Figure 7. Center: Speedup of varying MASR designs normalized to a CPU running a dense baseline

RNN. Right: Breakdown of performance benefits for each proposed optimization on MASR designs.

Fig. 9: Impact of increasing parallelism (lanes) on SRAM area

efficiency, dynamic read power, and leakage power.

While MASR processes all time steps in the forward pass,

weights for the backward pass are concurrently loaded into

separate SRAMs. This double buffering of the forward and

backward weights reduces performance penalties from not hav-

ing the entire layer’s weights stored locally on-chip. Similarly,

activations beyond 333 timesteps (the average length of speech

samples in Librispeech) are also double buffered. Section VII-C

discusses the design decisions of double buffering.

Hidden state computation: For each time step t, the

accelerator first processes the matrix-vector multiplication

for hidden state, Whht−1. This computation is initiated by

loading the previous time step’s hidden states from the compact

activation SRAM to compact activation register files within

each PE. The entirety of the matrix-vector multiplication is

parallelized across the 2D array of PEs with multiple decoupled

lanes. Horizontal lanes evenly split columns (output dimension)

of the matrix, while vertical lanes evenly split rows (input

dimension). This enables balancing parallelism across the input

and output dimensions. Each lane is responsible for computing

partial products for a subset of rows and columns in the matrix-

vector product. As lanes finish processing each column, the

partial sum accumulator sums the partial products for each

output. An 800 element register file stores the outputs.

Finishing one time step: The above sequence repeats

to process the matrix-vector multiplication for inputs, Wxxt .

Once both matrix-vector multiplications have been processed,

the vector-vector add unit accumulates the biases, input

intermediates, and hidden intermediates. The resulting output

values are thresholded with ReLU and compactly written to

the hidden-state SRAM for the subsequent time step. This

completes one time step of the RNN layer.

TABLE IV: MASR design parameters

Lanes 32 256 1024
Weights per lane (KB) 32 4 1

Weight masks per lane (KB) 10 1.25 0.3
Total weight (KB) 1280

Total activations (KB) 450
Weight width (bits) 10

Activation width (bits) 10
Technology node 16nm
Frequency (MHz) 1000

Hardware implications of parallelism: The number of

parallel lanes determines the degree of parallelism and how

weights are partitioned across SRAMs. With 1024 lanes, each

lane’s weight and weight mask SRAM stores 1
1024 of the

parameters. Similarly, number of vertical lanes determines the

size of the compact activation register files. For example, with

32 vertical lanes, each register file only tracks 1
32 of the values.

Horizontal lanes in a row process the same portion of the

activation vectors. To reduce the cost of duplicated activations,

horizontal lanes within a PE share a physical activation register

file. Given that lanes are decoupled, increasing the number

of lanes per PE requires additional ports to the physical

register file, which increases the register file’s size and cost

per access. Note that MASR’s decoupled PE/lane architecture

does not depend on complex crossbar architectures that can

limit efficiency of highly parallel sparse DNN accelerators.

Section VII explores the design space encompassed by these

parameters. Table IV illustrates the parameters for LANESx32,

LANESx256, and LANESx1024.

Outside of the PEs, the MASR architecture has two additional

parameters: depth of the back end queues and number of

banks for activation SRAMs. The partial sum accumulators

accumulate the output of each column once all lanes in the

given vertical slice finish generating their partial product. Lanes

that finish early are stalled, reducing the performance of the

overall design. Increasing the depth of the back end queues

reduces this back pressure. However, this comes at an area

and energy cost, given each lane pushes partial products to

a separate back end queue. In addition, the vector-vector add

unit can be parallelized. This involves not only duplicating the

number of adders but also partitioning the activation SRAMs

into multiple banks (see Section VIII for details).

7

LANESx64 LANESx256 LANESx1024LANESx32 LANESx128 LANESx512

Fig. 10: The plots on the left summarizes area (top row), energy (middle row), and power (bottom row) tradeoffs for the

fully optimized designs for various MASR design points. On the right we breakdown each optimization and each resource

(weights, activations, sparse encoding masks, registers, and logic). The breakdowns are for the optimized baseline (distilled,

Section III-C), optimized (weight pruning), and Act (sparse activations, fully optimized).

B. The MASR Lane

The MASR lane is the main computational workhorse for

sparse vector-matrix multiplication. Each pipelined lane is

organized in two phases, front end and back end. Intuitively,

the front end decodes work from weight and activation masks,

whereas the back end performs MACs after accessing compact

weights and activations. This eliminates wasted work in the

back end, regardless of the distribution of sparse weights,

activations, and outputs.

The front end first reads the binary masks, for both weights

and activations. The binary masks are then ANDED together

and the resulting work mask represents the absolute minimum

non-zero weights and activations to accumulate.

The back end has four pipeline stages. Stage 1 receives the

work mask and uses a single-cycle LNZD to find the next

pair of non-zero weights and activations. Stage 2 computes

the relative addresses using the LNZD output and population

counts of the weight and activation masks. Stage 3 reads the

weights SRAM and activation register file. Stage 4 evaluates

the MAC. Separate accumulators are maintained for the positive

and negative weights as they were quantized separately (see

in Section 2). When the computation for the output neuron

finishes, the partial sum is pushed onto the queue.

VI. EVALUATION METHODOLOGY

The accelerator design space we explore is vast and each

point is evaluated running the entire forward and backward

passes of the bidirectional RNN. We validate a custom cycle-

level C++ simulator of the accelerator with a synthesized

RTL implementation. We annotate the simulator based on PPA

characterizations from synthesized RTL using a commercial

16nm FinFET standard cell library at 1GHz. To model the

SRAM area, energy, and power consumption, we use a

commercial memory compiler in the same process.

We also evaluate the benefits of sparsity on CPUs and GPUs

by profiling GEMM and SPMV kernels on real machines.

For CPU baselines we run the Eigen library on a desktop

Intel Core i7-6700K with SIMD support, using the -O3 and

TABLE V: Topology of MASR Pareto front points.

Accel Horiz Lanes Vert Lanes Horiz PEs
LANESx32 16 2 2
LANESx64 32 2 2

LANESx128 32 4 2
LANESx256 32 8 2
LANESx512 32 16 1
LANESx1024 32 32 1

-ffast-math compiler flags. The GPU baselines run GEMM

and SPMV kernels provided by Deep Bench [63], using

cuBLAS/cuSparse libraries on a NVIDIA GTX 1080 GPU.

VII. PERF., AREA, ENERGY, AND POWER BENEFITS

Optimal configuration of MASR’s modular architecture

depends on the intended use case. This section presents results

of an extensive design space exploration of MASR’s free

parameters that exposes energy-performance tradeoffs. We then

analyze the performance, area, and energy/power breakdowns

for points along the Pareto frontier of the design space in

order to quantify the benefits of each optimization and identify

where resources are being consumed. For all experiments in this

section, we fix the depth of the back end accumulator queue

to a single element and assume one-bank activation SRAMs.

We report the performance, area, and energy consumed for an

accelerator provisioned to run a full seven seconds of speech,

the average sample length in the Librispeech corpus, across

multi-layer bidirectional RNNs. Finally, we discuss how the

design scales when running shorter and longer speech samples.

A. Design Space Exploration

MASR’s modularity enables both high performance and low

power solutions. The tunable microarchitectural parameters

considered in the design space, outlined in Figure 7, include

the number of horizontal lanes, number of vertical lanes, and

number of horizontal PEs. All possible configurations are swept

so that the total number of lanes ranges from 1 to 1024 at

powers of 2, with a maximum of 32 lanes in either dimension.

8

Sweeping the total number of lanes produces the energy-area-

performance Pareto frontiers illustrated in Figure 8 (left). As

parallelism increases, execution time and energy consumption

decrease while area increases. This is a result of partitioning

SRAMs into smaller arrays in order to support the bandwidth

needed for more parallel datapaths. Figure 9 shows that

partitioning SRAMs decreases the power per read and per-

bit area efficiency. Even in highly parallel architectures such as

LANESx1024, SRAM leakage is a small fraction of the overall

energy due to the highly optimized 16nm FinFET libraries.

In addition to lane count the organization of lanes/PEs

has an impact on accelerator performance. Table V shows

Pareto optimal designs tend to have more horizontal lanes

than vertical ones. Increasing the number of vertical lanes

reduces the number of rows each lane processes, and thus also

reduces the activation register file size. For example, with 8

vertical lanes, the activation register files contain 64 words;

with 32 vertical lanes, they contain 16. Processing a small

number of activations leads to load imbalance across lanes,

degrading performance. A solution to this problem is discussed

in Section VIII. The following sections detail the performance,

area, energy, and power characteristics of the optimal designs.

B. Performance

Figure 8 (center) shows the speedup by running a dense

7-layer bidirectional RNN and the efficient baseline on MASR

and a GPU, normalized to running the dense network on a CPU.

Performance is measured as the execution time to process the

full 7-seconds of speech. While the more programmable GPU

benefits from knowledge distillation (1.4×) and weight pruning

(3×), it is unable to exploit activation sparsity. The MASR

designs benefit from knowledge distillation, weight pruning,

and sparse activation execution, improving the performance of

the accelerator beyond that of the more programmable systems.

Figure 8 (right) breaks down the performance benefit that

each optimization offers. We find that the overall benefits of

sparse optimizations diminish as parallelism increases. While

each design observes speedup from knowledge distillation

and sparse weight execution, speedup from sparse activation

execution does not scale as gracefully. For example, we

find sparse activations provide up to 3.75× speedup on the

LANESx32 design, while their benefit on LANESx1024 is

reduced to 2.2× due to higher load imbalance in more parallel

accelerator topologies. Section VIII proposes low-cost solutions

to balance dynamic activations at run-time — improving

speedup from sparse execution by 1.7× and allowing even

the most parallel designs to achieve near-linear speedup.

Output sparsity In addition to exploiting input neuron

sparsity, xt and ht , prior work exploits sparsity in output

neurons [14], [64]. This requires predicting output neurons

that will be masked by ReLU. While the focus of paper is

on exploiting weight and activation sparsity, MASR can also

support output sparsity. In particular, input intermediates, Wxxt ,

and hidden-state intermediates, Whht , follow distinct distribu-

tions. Batch-normalizaton only operates on inputs, xt (zero

mean) causing hidden-state intermediates to be more negative

Weights
 read
from

DRAM

Activations fetched from DRAM

SRAM Energy

Logic
Energy

DRAM Energy

Fig. 11: Energy breakdown of LANESx256 running speech

of varying length overlaid with the distribution of samples

found in Librispeech. DRAM energy cost, for double buffering

weights and activations, is small.

than input intermediates. Highly negative hidden intermediates,

computed first, will likely be zeroed out by the ReLU function

even after accumulating with input intermediates. Thus, input

intermediate calculations are skipped if the corresponding

hidden intermediate is sufficiently negative, akin to the output

sparsity predictor in [14]. Figure 8(right) shows that output

predication (OP) improves performance by up to 15%.

C. Area, Energy, and Power

Figure 10 shows the area, energy, and power breakdowns for

each design point along the energy-performance Pareto frontier.

The left column illustrates the overall trends as the accelerator

scales to more parallel design points. The remaining columns

on the right side provide detailed resource breakdowns. To

understand the benefits of each optimization in accelerators

with varying degrees of parallelism, three sets of resource

breakdown bars correspond to design variants provisioned to

run a dense 7-layer bidirectional RNN (Base), the efficient

baseline that applies knowledge distillation and weight pruning

(Opt), and with sparse activations (AS).

Area: Figure 10 (top row, right) shows the area footprints of

each accelerator design. Partitioning weight and weight mask

SRAMs diminishes the benefits of compactly storing weights

in more parallel designs. For instance, for the LANESx64

architecture, starting from (base), weight sparsity (opt) reduces

area from 5.5mm2 down to 4.0mm2 (1.5mm2 benefit). On the

other hand, weight sparsity reduces LANESx1024 area from

8.3mm2 to 7.8mm2 (0.5mm2 benefit).

After compressing the weights, quantized activations con-

sume up to 50% of the accelerator area, especially in the

smaller LANESx32-256 designs. Compact activation storage

reduces the memory area consumed by activations by 3×.

This corresponds to reducing the area devoted to activations

alone from 1.7mm2 to 0.6mm2. Given MASR’s modular design,

compact activation storage provides the same area benefit to all

design variants; input and hidden-state memories are maintained

outside of the PEs/lanes. This modularity also facilitates scaling

the architecture to domains that may require processing much

larger speech samples [2]. For instance, provisioning MASR to

9

Lanesx64 Lanesx256 Lanesx1024

Trade off Stall for Idle cycles
1.8x speedup

Resource constrained

Parallelize VV-Add

Fig. 12: Left: As we scale the number of activation SRAM banks in the LANESx1024 architecture, the cycles spent on VVAdd

decreases. Center: Scaling the depth for back-end accumulator queue trades off stalls for idle cycles. Right: The impact of

increasing the number of activation SRAM banks (VV) combined with either horizontal load balancing (VV+HLB) or vertical

load balancing (VV+VLB) on the performances of LANESx64, LANESx256, and LANESx1024..

process up to 15 seconds of speech, compact activation storage

would save 2.2mm2, reducing overall area by 1.8×.

After weights and activations, the remaining area is con-

sumed by registers and logic. The increase in register area

across more parallel designs is dominated tracking more

weights and activation bitmasks per lane. These bitmasks

account for over 90% of the register area. The secondary

consumers (8%) of the register area are the backend queues.

Energy and Power: The energy breakdown across each

accelerator design is shown Figure 10(middle row). The left

column shows that LANESx256 is the energy-optimal design

point even though LANESx1024 uses smaller SRAMs that

dissipate less read power. The reason is two-fold: per-read

energy cost plateaus in the most parallel accelerator designs,

and the proportion of power consumed by registers increases

for larger accelerators. As previously discussed, the first

effect occurs because the smaller memories used in the more

parallel designs (LANESx512 and LANESx1024) do not reduce

dynamic read power proportionally to capacity reduction. The

second effect comes from more parallel designs requiring the

maintenance of more active states.

Generally, energy savings come from doing less work and

making fewer SRAM accesses. For example, Figure 10 (middle)

shows that compared to the dense RNN (base), the efficient

baseline reduces the energy consumed by 4.2× (i.e., 1.4×
from knowledge distillation, 3× from weight pruning) across

all accelerator designs. Similarly, sparse activation execution

further reduces energy by around 2.5×.

Because of MASR’s sparse encoding mechanism, sparsity

optimizations impact energy more than power. As long as

work remains, a MAC is issued to the lane on every cycle,

keeping power relatively constant. The 1.4× power reduction

between dense RNN (base) and optimized baseline (opt) comes

from decreasing the size of weight SRAMs by storing fewer

non-zero parameters (Figure 10, middle and bottom rows).

D. Supporting Speech of Arbitrary Length

ASR models comprise millions of parameters which cannot

be realistically stored on-chip. The storage requirements are

further exacerbated when considering activation memory for

longer speech samples. To minimize on-chip SRAM, MASR

double buffers both weights and activations.

Performance and area Using LPDDR4 as off-accelerator

memory, the performance and energy penalty of double

buffering is relatively low. MASR double buffers forwards

and backwards weights in separate SRAMs. LPDDR4 supports

a bandwidth of 25.6GB/s while dissipating 200mW of power

[65]. At this rate it takes 0.019ms to read in a layer’s weights.

This corresponds, roughly, to the time it takes process 250

timesteps of speech. Thus, to avoid memory contention, MASR

stores activations for the first 333 timesteps (the average length

in Librispeech) on-chip. Activations for later timesteps are

double buffered within an 800-element register, which incurs

negligible area overheads. Similarly, there is no performance

penalty since the time to read activations from LPDDR4 is

strictly less than the time to process a single timestep.

Energy Figure 11 illustrates the DRAM energy cost relative

to on-chip SRAM and logic for samples from 50 timesteps

to 1600 timesteps. For samples less than 333 timesteps, the

DRAM energy consists solely of reading weights. This energy

overhead is amortized with longer speech samples. For instance,

at 333 timesteps, DRAM consumes about 10% of the energy.

Speech samples longer than 333 timesteps, incur an additional

energy penalty for reading activations from DRAM; however,

DRAM energy remains a small fraction compared to SRAM and

logic. Thus, MASR supports arbitrary length speech samples

at negligible performance, area, and energy cost.

VIII. SCALABILITY FOR END-TO-END RNN

As the number of parallel lanes increases, two main

performance bottlenecks emerge: vector-vector add (VVAdd)

operations and load imbalance. We address these bottlenecks

by: (1) parallelizing the VVAdd operations with multi-banked

activation SRAMs; and (2) dynamic load balancing for sparse

activations. These optimizations improve performance by up

to 1.8×, allowing highly parallel designs to achieve high MAC
utilization while executing with sparse weights and activations.

Parallelizing VVAdd Each time step in RNNs includes

two matrix-vector multiplications and a VVAdd (i.e., Wxxt +
Whht−1). Although the matrix-vector multiplications are the

core kernels, Figure 12 (left) shows that with a single activation

SRAM bank, the LANESx1024 design’s MAC utilization is

only 27%, while the largest fraction of cycles (35%) devoted to

VVAdd. This is due to bandwidth limitations of the activation

10

Fig. 13: Energy savings (top), energy consumption (middle),

and performance impact of scaling to larger RNNs (bottom)

as density in weights and activations varies on LANESx256.

SRAMs. Recall that the word width of the activation SRAM is

60 bits, limiting VVAdd operations to 6 per cycle. Partitioning

the compact activation memory into smaller banks enables

parallelizing the computation. Partitioning the memory into

8 banks decreases the fraction of cycles spent on VVAdd

operations from 35% to 6%, and increases the MAC utilization

from 27% to 39% at a negligible area penalty.

A. Dynamic Activation Load Balancing

After parallelizing the VVAdd operation, the next bottleneck

to scaling performance is load imbalance, a result of irregular

sparsity. Previous work uses load balance-aware pruning, where

the network is pruned during training such that each MAC gets

the same number of non-zero weights [47]. This static method

does not work for dynamic activation sparsity. Moreover,

the main source of load imbalance in RNNs is the uneven

distribution of non-zero activations across PEs. To address

this dynamic load imbalance, we first trade off stall cycles for

idle cycles by increasing the depth of back end queues. We

then propose a low-cost solution to dynamically redistribute

work to idle lanes, which improves the MAC utilization and

performance of the LANESx1024 architecture by 1.3×.

Figure 12 (center) illustrates the trade-off between stall and

idle cycles as the back end accumulator queue depth increases.

Stalls are caused by back pressure from the accumulator. Idle

cycles are caused by some lanes computing their partial outputs

faster than others. With a queue depth of one, lanes spend 28%

of their time stalled, and 22% of their time in the idle state.

By increasing the depth of the queues to 8, the fraction of stall

cycles falls to 9% whereas the fraction of idle cycles climbs

to 42%. 0.3mmm2. This comes at a negligible area penalty of

0.3mm2 for the largest LANESx1024 design.

Balancing non-zero activations The high percentage of idle

cycles suggests redistributing work to lanes that finish early,

by balancing load across both horizontal lanes and vertical

lanes. With horizontal load balancing, work is distributed to

lanes within the same PE. Since all lanes within a PE process

the same activations, horizontal load balancing requires storing

additional copies of compact weights for neighboring lanes.

In practice, we only duplicate about 10% of the weights.

Vertical load balancing distributes work to lanes across vertical

PEs. This involves duplicating not only weights but also

activations. Given activations are stored in local registers, the

cost of duplicating them is negligible. Duplicating weights and

activations to enable load balancing also eliminates the need

for complex crossbar inter-connects that often limit efficiency

for sparse DNN accelerators at scale.

Hardware utilization Figure 12 (right) illustrates the impact

of each optimization on the performance of LANESx64,

LANESx256, and LANESx1024. To highlight how well each

design variant parallelizes sparse RNNs, we normalize the

performance of each to its theoretical speedup over serial

execution. Vertical load balancing outperforms horizontal load

balancing, because redistributing work across PEs balances

the number of non-zero activations, the main source of

load imbalance. Moreover, LANESx64, LANESx256, and

LANESx1024 designs achieve 90%, 80%, and 50% utilization.

B. Scaling RNN Size and Sparsity

Recent advances in the machine learning community allow

training sparser networks without sacrificing accuracy [57],

[66], [67]. This suggests further performance and energy

improvements may be possible with even higher sparsity. To

study the robustness and scalability of MASR, we artificially

scale weight and activation non-zero ratios, using synthetic

RNN benchmarks, for the energy-optimal LANESx256 design.

Figure 13(top, middle) plots the energy savings and con-

sumption as the non-zero ratio in weights and activations scales

from 10% to 50%. As the energy saved from sparse execution

depends on the non-zero ratio (not model size), we consider

RNNs with 3072 hidden states. MASR’s energy efficiency

improves with greater sparsity, a result of fewer memory

accesses. For example, the energy savings at non-zero ratios

of 25% and 10% are 12× and 26× respectively. At lower

non-zero ratios, sparse encoding overheads limit savings as

weight masks dominate energy consumption.

Figure 13(bottom) plots the impact of sparsity on perfor-

mance across a range of network sizes. As expected, speedup

from sparse execution improves with greater sparsity. For

RNNs with 3072 hidden units, sparse execution yields a 14.4×
and 76× speedup with 25% and 10% non-zeros, respectively.

Finally, we find that performance improvements of sparse

execution scale better for larger models. For instance, with

10% non-zeros, the speedup is 49× for the RNNs with 1024

hidden unit. This due to better load balancing in larger models.

Thus, we expect MASR’s architecture to scale well with larger

ASR RNNs and advanced pruning techniques are applied.

C. Hardware Implementation

Results shown thus far are based on cycle-level C++

simulations with power models derived from synthesized RTL.

A PE of a LANESx32 RTL was placed-and-routed, as shown

in Figure 14, using a commercial 16nm FinFET standard cell

11

Fig. 14: MASR LANESx32 placed-and-routed layout

library and memory compiler. We validate our simulation results

within 10% power and 12% area and find negligible difference

in performance. A fabricated SoC based on LANESx32 design

has been received from fabrication.

IX. DISCUSSION

This section provides a quantitative comparison between the

MASR accelerator and two other accelerators, shown in Table I,

for sparse neural networks with different design objectives: ESE

[47] (weight sparsity) and EIE [8] (both weight and activation

sparsity). Based on each accelerator’s memory access patterns,

we accumulate the cost of the weights memory, activations

memory, and sparse indexing. For fair comparison, each design

is implemented as a specialized ASIC with the same 16nm

FinFET process and the same optimized RNN, see Table III.

Performance Assuming the same weight sparsity, activation

sparsity, and number of parallel MACs/PEs, hardware utilization

determines performance differences between the accelerators.

The LANESx256 design for MASR demonstrates an 80%

utilization, compared to 50% in EIE [8]. This is a result

of ensuring no wasted work with the binary mask sparse

encoding and re-distributing sparse activations for dynamic

load balancing in MASR. For instance, CSR adds superfluous

non-zero values (up to 40% wasted work) and does not account

for imbalance in non-zero activations. By exploiting activation

sparsity, MASR has 3× higher performance than ESE.

Area Figure 15 (top) compares the area footprints of MASR,

ESE, and EIE, all normalized to the area of the smallest MASR

design (LANESx32), as the designs scale from 32 to 512

parallel MACs/lanes. The area for ESE and EIE are equivalent,

as both store activations densely and weights compactly, using

CSR. For smaller architectures, such as those with 32 or

64 parallel MACs/lanes, MASR’s area savings come from

compactly storing sparse activations.

Area savings are more pronounced as the accelerators scale

to higher parallelism due to MASR’s lower-overhead sparse

encoding mechanism. Storage for row pointers, used in CSR in

ESE and EIE, scales with the number of MACs and dominates

for accelerators with more than 128 parallel MACs . Instead of

explicitly storing the row pointers in memory, MASR computes

the addresses for sparse weights and activation in logic (see

Section IV-B for details). This consumes a fixed amount of

memory regardless of the number of parallel lanes. As a

result, MASR has at least 2× smaller on-chip area footprint

as accelerators scale beyond 128 MACs/lanes.

Fig. 15: Area normalized to LANESx32 (top) and Energy

normalized to LANESx256 (bottom) consumed by MASR,

EIE and ESE as parallel MACs/lanes scale. All accelerators

are implemented in same 16nm process technology.

Energy Figure 15 (bottom) compares the energy consumed

by MASR, ESE, and EIE, all normalized to the energy of

the energy-optimal design (LANESx256) as the designs scale

from 32 to 512 parallel MACs/lanes. In addition to the area

benefits, MASR consumes 5× and 3× less energy than ESE

and EIE, respectively, as it scales beyond 128 MACs/lanes.

These energy savings come from MASR’s lower overhead

sparse encoding mechanism. For each row in the matrix, a PE

in ESE and EIE reads two row pointers to determine the first

and last non-zero weights. Row pointer accesses scale with

the number of parallel, and, like the area overheads, energy

consumption is dominated by these row-pointers for more

parallel designs. MASR eliminates the cost of reading row

pointers by computing the sparse indexing in logic.

X. CONCLUSION

We present MASR, a novel bidirectional RNN accelerator

for on-chip ASR that exploits sparsity in both dynamic

activations and static weights, compacts storage of non-zero

parameters, and wastes no energy at all on null computations.

Compared to a state-of-the-art sparse DNN accelerator [8],

MASR improves performance, area, and energy by 1.6×, 3×,

and 2×, respectively. MASR’s modular architecture provides

scalable designs ranging from resource-constrained low-power

IoT applications to highly parallel datacenter deployments.

ACKNOWLEDGEMENTS

This work was supported by the Applications Driving

Architectures (ADA) Research Center, a JUMP Center co-

sponsored by SRC and DARPA, the NSF under CCF-1704834,

and Intel Corporation.

12

REFERENCES

[1] Amazon, “What is automatic speech recognition (ASR)?.”
https://developer.amazon.com/alexa-skills-kit/asr, 2018.

[2] “Google Duplex: An AI system for accomplishing real-world tasks
over the phone.” https://ai.googleblog.com/2018/05/duplex-ai-system-for-
natural-conversation.html, 2018.

[3] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro,
J. Chen, M. Chrzanowski, A. Coates, G. Diamos, E. Elsen, J. Engel,
L. Fan, C. Fougner, T. Han, A. Y. Hannun, B. Jun, P. LeGresley, L. Lin,
S. Narang, A. Y. Ng, S. Ozair, R. Prenger, J. Raiman, S. Satheesh,
D. Seetapun, S. Sengupta, Y. Wang, Z. Wang, C. Wang, B. Xiao,
D. Yogatama, J. Zhan, and Z. Zhu, “Deep speech 2: End-to-end speech
recognition in english and mandarin,” CoRR, vol. abs/1512.02595, 2015.

[4] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recurrent
neural network architectures for large scale acoustic modeling,” in
Fifteenth annual conference of the international speech communication
association, 2014.

[5] H. Sak, A. W. Senior, K. Rao, and F. Beaufays, “Fast and accurate
recurrent neural network acoustic models for speech recognition,” in
INTERSPEECH, 2015.

[6] “Google voice search: faster and more accurate.”
https://ai.googleblog.com/2015/09/google-voice-search-faster-and-
more.html, 2015.

[7] D. P. Vassil Panayotov, Guoguo Chen and S. Khudanpur, “Librispeech:
an asr corpus based on public domain audio books,” ICASSP’15, 2015.

[8] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: efficient inference engine on compressed deep neural
network,” CoRR, vol. abs/1602.01528, 2016.

[9] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. S. Emer, S. W. Keckler, and W. J. Dally, “SCNN: an
accelerator for compressed-sparse convolutional neural networks,” CoRR,
vol. abs/1708.04485, 2017.

[10] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-X: An accelerator for sparse neural networks,” in
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 1–12, Oct 2016.

[11] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks,” in ISSCC, 2016.

[12] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” CoRR, vol. abs/1503.02531, 2015.

[13] F. Silfa, G. Dot, J.-M. Arnau, and A. Gonzalez, “E-PUR: An energy-
efficient processing unit for recurrent neural networks,” 2017.

[14] J. Zhu, J. Jiang, X. Chen, and C.-Y. Tsui, “Sparsenn: An energy-efficient
neural network accelerator exploiting input and output sparsity,” in 2018
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 241–244, IEEE, 2018.

[15] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan,
G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter performance
analysis of a tensor processing unit,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, ISCA ’17, (New
York, NY, USA), pp. 1–12, ACM, 2017.

[16] NVIDIA, “Nvidia deep learning accelerator (NVDLA),” 2018.
[17] K. Hazzelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, M. Fawzy,

B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis, M. Smelyan-
skiy, L. Xiong, and X. Wang, “Applied machine learning at facebook: A
datacenter infrastructure perspective,” in Proceedings of the 24th IEEE
International Symposium on High-Performance Computer Architecture,
HPCA ’18, 2018.

[18] B. R. G.-Y. W. Robert Adolf, Saketh Rama and D. Brooks, “Fathom:
Reference workloads for modern deep learning methods,” IISWC’16,
2016.

[19] J. Park, M. Naumov, P. Basu, S. Deng, A. Kalaiah, D. Khudia, J. Law,
P. Malani, A. Malevich, S. Nadathur, et al., “Deep learning inference in
facebook data centers: Characterization, performance optimizations and
hardware implications,” arXiv preprint arXiv:1811.09886, 2018.

[20] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in ASPLOS, 2014.

[21] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, and O. Teman, “Dadiannao: A machine-learning supercomputer,”
in MICRO, 2014.

[22] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernandez-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling Low-
Power, Highly-Accurate Deep Neural Network Accelerators,” in ISCA,
2016.

[23] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” SIGARCH Comput. Archit. News, vol. 44, pp. 1–13, June
2016.

[24] C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang, X. Qian,
Y. Bai, G. Yuan, X. Ma, Y. Zhang, J. Tang, Q. Qiu, X. Lin, and B. Yuan,
“Circnn: Accelerating and compressing deep neural networks using block-
circulant weight matrices,” in Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-50 ’17, (New
York, NY, USA), pp. 395–408, ACM, 2017.

[25] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
in Proceedings of the 43rd International Symposium on Computer
Architecture, ISCA ’16, (Piscataway, NJ, USA), pp. 14–26, IEEE Press,
2016.

[26] M. Rhu, M. O’Connor, N. Chatterjee, J. Pool, and S. W. Keckler,
“Compressing DMA engine: Leveraging activation sparsity for training
deep neural networks,” CoRR, vol. abs/1705.01626, 2017.

[27] S. Venkataramani, A. Ranjan, S. Banerjee, D. Das, S. Avancha, A. Jagan-
nathan, A. Durg, D. Nagaraj, B. Kaul, P. Dubey, et al., “Scaledeep: A
scalable compute architecture for learning and evaluating deep networks,”
ACM SIGARCH Computer Architecture News, vol. 45, no. 2, pp. 13–26,
2017.

[28] M. Song, J. Zhao, Y. Hu, J. Zhang, and T. Li, “Prediction based execution
on deep neural networks,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), pp. 752–763, IEEE, 2018.

[29] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” in ACM SIGARCH Computer
Architecture News, vol. 44, pp. 27–39, IEEE Press, 2016.

[30] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
“Stripes: Bit-serial deep neural network computing,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pp. 1–12, IEEE, 2016.

[31] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Es-
maeilzadeh, “Bit fusion: Bit-level dynamically composable architecture
for accelerating deep neural networks,” in Proceedings of the 45th Annual
International Symposium on Computer Architecture, pp. 764–775, IEEE
Press, 2018.

[32] A. Ren, T. Zhang, S. Ye, J. Li, W. Xu, X. Qian, X. Lin, and Y. Wang,
“Admm-nn: An algorithm-hardware co-design framework of dnns using
alternating direction methods of multipliers,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’19, (New
York, NY, USA), pp. 925–938, ACM, 2019.

[33] H. Kung, B. McDanel, and S. Q. Zhang, “Packing sparse convolutional
neural networks for efficient systolic array implementations: Column
combining under joint optimization,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 821–834, ACM, 2019.

[34] T. Jin and S. Hong, “Split-cnn: Splitting window-based operations in
convolutional neural networks for memory system optimization,” in
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pp. 835–847, ACM, 2019.

[35] Z. Li, C. Ding, S. Wang, W. Wen, Y. Zhuo, C. Liu, Q. Qiu, W. Xu,
X. Lin, X. Qian, et al., “E-rnn: Design optimization for efficient recurrent
neural networks in fpgas,” in 2019 IEEE International Symposium on

13

High Performance Computer Architecture (HPCA), pp. 69–80, IEEE,
2019.

[36] J. F. K. O. M. Papamichael, T. M. M. Liu, D. L. S. A. M. Haselman,
L. A. M. Ghandi, S. H. P. P. A. Sapek, and G. W. L. Woods, “A
configurable cloud-scale dnn processor for real-time ai,”

[37] X. Zhang, C. Xie, J. Wang, W. Zhang, and X. Fu, “Towards memory
friendly long-short term memory networks (lstms) on mobile gpus,” in
2018 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pp. 162–174, IEEE, 2018.

[38] H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling flexible dataflow
mapping over dnn accelerators via reconfigurable interconnects,” in ACM
SIGPLAN Notices, vol. 53, pp. 461–475, ACM, 2018.

[39] M. Sivathanu, T. Chugh, S. S. Singapuram, and L. Zhou, “Astra:
Exploiting predictability to optimize deep learning,” in Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’19, (New
York, NY, USA), pp. 909–923, ACM, 2019.

[40] M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis, “Tangram:
Optimized coarse-grained dataflow for scalable nn accelerators,” in Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 807–
820, ACM, 2019.

[41] Y. Guan, Z. Yuan, G. Sun, and J. Cong, “Fpga-based accelerator for long
short-term memory recurrent neural networks,” in 2017 22nd Asia and
South Pacific Design Automation Conference (ASP-DAC), pp. 629–634,
Jan 2017.

[42] E. C. Andre Xian Ming Chang, Berin Martini, “Recurrent neural networks
hardware implementation on fpga,” 2016.

[43] C. Gao, D. Neil, E. Ceolini, S.-C. Liu, and T. Delbruck, “Deltarnn: A
power-efficient recurrent neural network accelerator,” in Proceedings of
the 2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA ’18, (New York, NY, USA), pp. 21–30, ACM, 2018.

[44] R. Yazdani, J.-M. Arnau, and A. González, “Unfold: A memory-
efficient speech recognizer using on-the-fly wfst composition,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-50 ’17, (New York, NY, USA), pp. 69–81,
ACM, 2017.

[45] A. Y. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates, and A. Y. Ng,
“Deep speech: Scaling up end-to-end speech recognition,” CoRR,
vol. abs/1412.5567, 2014.

[46] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[47] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang, H. Yang, and W. J. Dally, “ESE: efficient speech recognition
engine with compressed LSTM on FPGA,” CoRR, vol. abs/1612.00694,
2016.

[48] A.-R. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic modeling
using deep belief networks,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 20, no. 1, pp. 14–22, 2012.

[49] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal Processing Magazine, vol. 29,
no. 6, pp. 82–97, 2012.

[50] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[51] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[52] “A broad ml benchmark suite for measuring performance of ml
software frameworks, ml hardware accelerators, and ml cloud platforms.”
https://mlperf.org/, 2018.

[53] “Pytorch.” http://pytorch.org/, 2017.

[54] “deepspeech.pytorch.” https://github.com/SeanNaren/deepspeech.pytorch,
2018.

[55] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, “Connectionist
temporal classification: Labelling unsegmented sequence data with
recurrent neural networks,” ICML’2006, 2006.

[56] R. Yazdani, M. Riera, J.-M. Arnau, and A. Gonzalez, “The dark side of
dnn pruning,” in ISCA, 2018.

[57] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
CoRR, vol. abs/1510.00149, 2015.

[58] B. Reagen, U. Gupta, R. Adolf, M. M. Mitzenmacher, A. M. Rush, G.-Y.
Wei, and D. Brooks, “Weightless: Lossy weight encoding for deep neural
network compression,” arXiv preprint arXiv:1711.04686, 2017.

[59] S. Narang, E. Elsen, G. Diamos, and S. Sengupta, “Exploring sparsity
in recurrent neural networks,” arXiv preprint arXiv:1704.05119, 2017.

[60] E. Battenberg, J. Chen, R. Child, A. Coates, Y. G. Y. Li, H. Liu,
S. Satheesh, A. Sriram, and Z. Zhu, “Exploring neural transducers
for end-to-end speech recognition,” in 2017 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU), pp. 206–213, IEEE,
2017.

[61] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez, D. Zhao,
D. Rybach, A. Kannan, Y. Wu, R. Pang, et al., “Streaming end-to-end
speech recognition for mobile devices,” arXiv preprint arXiv:1811.06621,
2018.

[62] C.-C. Chiu and C. Raffel, “Monotonic chunkwise attention,” arXiv
preprint arXiv:1712.05382, 2017.

[63] “Deepbench.” https://github.com/baidu-research/DeepBench, 2018.
[64] V. Akhlaghi, A. Yazdanbakhsh, K. Samadi, R. K. Gupta, and H. Es-

maeilzadeh, “SnaPEA : Predictive early activation for reducing computa-
tion in deep convolutional neural networks,” in Proceedings of the 45th
International Symposium on Computer Architecture, 2018.

[65] K. Chandrasekar, C. Weis, Y. Li, S. Goossens, M. Jung, O. Naji,
B. Akesson, N. Wehn, , and K. Goossens, “Drampower: Open-source
dram power and energy estimation tool.” http://www.drampower.info.

[66] K. Ullrich, E. Meeds, and M. Welling, “Soft weight-sharing for neural
network compression,” ICLR’2017, vol. abs/1702.04008, 2017.

[67] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
dnns,” NIPS’2016, vol. abs/1608.04493, 2016.

14

