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Abstract—Neural personalized recommendation is the cor-
nerstone of a wide collection of cloud services and products,
constituting significant compute demand of cloud infrastructure.
Thus, improving the execution efficiency of recommendation
directly translates into infrastructure capacity saving. In this
paper, we propose DeepRecSched, a recommendation inference
scheduler that maximizes latency-bounded throughput by taking
into account characteristics of inference query size and arrival
patterns, model architectures, and underlying hardware systems.
By carefully optimizing task versus data-level parallelism, Deep-
RecSched improves system throughput on server class CPUs
by 2× across eight industry-representative models. Next, we
deploy and evaluate this optimization in an at-scale produc-
tion datacenter which reduces end-to-end tail latency across
a wide variety of recommendation models by 30%. Finally,
DeepRecSched demonstrates the role and impact of specialized
AI hardware in optimizing system level performance (QPS) and
power efficiency (QPS/watt) of recommendation inference.

In order to enable the design space exploration of customized
recommendation systems shown in this paper, we design and
validate an end-to-end modeling infrastructure, DeepRecInfra.
DeepRecInfra enables studies over a variety of recommendation
use cases, taking into account at-scale effects, such as query
arrival patterns and recommendation query sizes, observed
from a production datacenter, as well as industry-representative
models and tail latency targets.

I. INTRODUCTION

Recommendation algorithms are used pervasively to im-

prove and personalize user experience across a variety of web-

services. Search engines use recommendation algorithms to

order results, social networks to suggest posts, e-commerce

websites to suggest purchases, and video streaming services

to recommend movies. As their sophistication increases with

more and better quality data, recommendation algorithms have

evolved from simple rule-based or nearest neighbor-based

designs [1] to deep learning approaches [2]–[7].
Deep learning-based personalized recommendation algo-

rithms enable a plethora of use cases [8]. For example, Face-

book’s recommendation use cases require more than 10× the

datacenter inference capacity compared to common computer

vision and natural language processing tasks [9]. As a result,

over 80% of machine learning inference cycles at Facebook’s

datacenter fleets are devoted to recommendation and ranking

inference [10]. Similar capacity demands can be found at

Google [11], Amazon [8], [12], and Alibaba [5], [6]. And
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Fig. 1: State-of-the-art recommendation models span diverse

performance characteristics compared to CNNs and RNNs.

Based on their use case, recommendation models have unique

architectures introducing model-level heterogeneity.

yet, despite their importance and the significant research on

optimizing deep learning based AI workloads [13]–[17] from

the systems and architecture community, relatively little atten-

tion has been devoted to solutions for recommendation [18].

In fact, deep learning-based recommendation inference poses

unique challenges that demand unique solutions.

First, recommendation models exhibit unique compute,

memory, and data reuse characteristics. Figure 1(a) compares

the compute intensity of industry-representative recommen-

dation models1 [2]–[7], [10] to state-of-the-art convolutional

(CNN) [19] and recurrent (RNN) neural networks [20].

Compared to CNNs and RNNs, recommendation models,

highlighted in the shaded yellow region, tend to be mem-

ory intensive as opposed to compute intensive. Furthermore,

recommendation models exhibit higher storage requirements

(GBs) and irregular memory accesses [10]. This is because

recommendation models operate over not only continuous but

also categorical input features. Compared to the continuous

features (i.e., vectors, matrices, images), categorical features

are processed by inherently different operations. This unique

characteristic of recommendation models exposes new system

design opportunities to enable efficient inference.

Next, depending on the use case, major components of a

recommendation model can be sized differently [21]. This

1Section III describes the eight recommendation models in detail.
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introduces model-level heterogeneity across the state-of-the-

art deep learning-based recommendation models. By focusing

on memory access breakdown, Figure 1(b) shows diversity

among recommendation models themselves. For instance,

dense feature processing that incurs regular memory accesses

dominate for Google’s WnD [4], [7], NCF [2], Facebook’s

DLRM-RMC3 [10], and Alibaba’s DIEN [6]. In contrast,

categorical, sparse feature processing that incurs irregular
memory accesses dominate for other recommendation models

such as Facebook’s DLRM-RMC1/RMC2 [10] and Alibaba’s

DIN [5]. These diverse characteristics of recommendation

models expose system optimization design opportunities.

Finally, recommendation models are deployed across web-

services that require solutions to consider effects of executing

at-scale in datacenters. For instance, it is commonly known

that requests for web-based services follow Poisson and log-

normal distributions for arrival and working set size respec-

tively [22]. Similar characteristics are observed for arrival

rates of recommendation queries. However, query working set

sizes for recommendation follow a distinct distribution with

heavier tail effects. This difference in query size distribution

leads to varying optimization strategies for at-scale inference.

Optimizations based on production query size distributions,

compared to log-normal, improve system throughput by up to

1.7× for at-scale recommendation inference.

To enable design optimizations for the diverse collection of

industry-relevant recommendation models, this paper presents

DeepRecInfra – an end-to-end infrastructure that enables

researchers to study at-scale effects of query size and ar-

rival patterns. First, we perform an in-depth characterization

of eight state-of-the-art recommendation models that cover

commercial video recommendation, e-commerce, and social

media [2], [4]–[7], [10]. Next, we profile recommendation

services in a production datacenter to instrument an inference

load generator for modeling recommendation queries.

Built on top of the performance characterization of the rec-

ommendation models and dynamic query arrival patterns (rate

and size), we propose a hill-climbing based scheduler – Deep-
RecSched – that splits queries into mini-batches based on the

query size and arrival pattern, the recommendation model, and

the underlying hardware platform. DeepRecSched maximizes

system load under a strict tail-latency target by trading off

request versus batch-level parallelism. Since it is also impor-

tant to consider the role of hardware accelerators for at-scale

AI infrastructure efficiency, DeepRecSched also evaluates the

impact of specialized hardware for neural recommendation by

emulating its behavior running on state-of-art GPUs.

The important contributions of this work are:

1) This paper describes a new end-to-end infrastructure,

DeepRecInfra, that enables system design and optimiza-

tion across a diverse set of recommendation models.

DeepRecInfra integrates query arrival patterns and size

distributions, observed in a production datacenter. We

highlight the importance of the unique query arrival and

size characteristics for at-scale recommendation inference

and identify a new performance optimization opportunity
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Fig. 2: General architecture of personalized recommendation

models. Configuring the key parameters (red) yields different

implementations of industry-representative models.

by exploiting request batching (Section III).

2) We propose DeepRecSched– the first batch-scheduler

that (a) partitions work across CPUs and accelerators

(GPU), (b) trades off batch- (data) and request- (task)

parallelism. DeepRecSched is tailor-designed to take into

account the dynamic query arrival patterns (rate and

size), recommendation model architectures, and service-

level latency targets (Section IV). Evaluated with Dee-

pRecInfra, DeepRecSched doubles system throughput of

server class CPUs under strict latency targets. In addition,

we implement and evaluate the proposed design on a

production datacenter with live recommendation query

traffic, showing a 1.3× reduction in the tail latency.

3) We demonstrate that GPU accelerators can be appealing

for recommendation inference. Given not all queries are
equal in recommendation inference, this paper shows that

the latency and throughput tradeoff between CPU and

GPU execution varies across different models, system

loads, and latency targets, highlighting the importance of

DeepRecSched’s dynamism to determine optimal config-

urations. We also show that, for recommendation infer-

ence, power efficiency is not always optimal in the face

of GPUs, as compared to CPUs (Section VI).

Systems research for personalized recommendation is still

a nascent field. To enable follow-on work, we have open
sourced the proposed DeepRecInfra infrastructure2. This

includes the industry-representative neural recommendation

models, and at-scale query arrival rates and size distributions

presented in this paper.

II. NEURAL RECOMMENDATION MODELS

Recommendation is the task of personalizing recommending

content based on a user’s preferences. Recommendation is

used across many services including search, video and movie

content, e-commerce, and advertisements. However, accurately

modeling preferences based on previous interactions can be

challenging because users only interact with a small subset of

all possible items. As a result, unlike inputs to traditional deep

neural networks (DNNs), inputs to recommendation models

include both dense and sparse features.

2http://vlsiarch.eecs.harvard.edu/research/recommendation
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Model Company Domain Dense-FC Predict-FC Embeddings
Tables Lookup Pooling

NCF [2] - Movies - 256-256-128 4 1 Concat
Wide&Deep [4] Google Play Store - 1024-512-256 Tens 1 Concat

MT-Wide&Deep [7] Youtube Video - N x (1024-512-256) Tens 1 Concat
DLRM-RMC1 [10] Facebook Social Media 256-128-32 256-64-1 ≤ 10 ∼ 80 Sum
DLRM-RMC2 [10] Facebook Social Media 256-128-32 512-128-1 ≤ 40 ∼ 80 Sum
DLRM-RMC3 [10] Facebook Social Media 2560-512-32 512-128-1 ≤ 10 ∼ 20 Sum

DIN [5] Alibaba E-commerce - 200-80-2 Tens Hundreds Attention+FC
DIEN [6] Alibaba E-commerce - 200-80-2 Tens Tens Attention+RNN

TABLE I: Architectural features of state-of-the-art personalized recommendation models.

A. Salient Components in Neural Recommendation Models

To accurately model user preference, state-of-the-art rec-

ommendation models use deep learning solutions. Figure 2

depicts a generalized architecture of DNN-based recommen-

dation models with dense and sparse features as inputs.

Features. Dense features describe continuous inputs that

are processed with MLP layers i.e., fully-connected layers –

similar to classic DNN approaches. On the other hand, sparse

features represent categorical inputs, such as the collection of

products a user has previously purchased. Since the number of

interactions for a categorical feature is often small compared

to the feature’s cardinality (all available products), the binary

vector representing such interactions ends up very sparse.

Embedding Tables. Each sparse feature has a correspond-

ing embedding table that is composed of a collection of latent

embedding vectors. The number of vectors, or rows in the

table, is determined by the number of categories in the given

feature – this can vary from tens to billions. The number of

elements in each vector is determined by the number of latent

features for the category representation. This latent dimension

is typically 16, 32, or 64. In total, embedding tables often

require up to tens of GBs of storage.

Embedding Table Access. While embedding tables them-

selves are dense data structures, embedding operations in-

cur sparse, irregular memory accesses. Each sparse input

is encoded either as one-hot or multi-hot encoded vectors,

which are used to index specific rows of an embedding table.

The resulting embedding vectors are combined with a sparse
feature pooling operation such as concatenation or sum.

Feature Interaction. The outputs of the dense and sparse

features are combined before being processed by subsequent

predictor-DNN stacks. Typical operations for feature interac-

tion include concatenation, sum, and averaging.

Product Ranking. The output of the predictor-DNN stacks

is the click through rate (CTR) probability for a single user-

item pair. To serve relevant content to users, the CTR of

thousands of potential items are evaluated for each user. All

CTR’s are then ranked and the top-N choices are presented

to the user. As a result, deploying recommendation models

requires running the models with non-unit batch sizes.

III. DEEPRECINFRA: AT-SCALE RECOMMENDATION

To better understand the distinct characteristics of and

design system solutions for neural recommendation models,

we developed, DeepRecInfra, to model and evaluate at-scale

recommendation inference. DeepRecInfra is implemented as

a highly extensible framework enabling us to consider a

variety of recommendation use cases. In particular, Deep-

RecInfra consists of three important components: (1) a suite

of industry-representative models, (2) industry-representative

tail latency targets, and (3) real-time query serving based on

arrival rates and working set size distributions profiled from

recommendation running in a production datacenter.

A. Industry-scale recommendation models

Recent publications from Google, Facebook, and Alibaba

present notable differences across their recommendation mod-

els [2], [5]–[7], [10]. The generalized recommendation model

architecture shown in Figure 2 can be customized by config-

uring formative parameters in order to realize these different

implementations. To capture the diversity, DeepRecInfra com-

poses a collection of eight state-of-the-art recommendation

models. We describe the unique aspects of each model below

and summarize their distinguishing parameters in Table I.

• Neural Collaborative Filtering (NCF) generalizes ma-

trix factorization (MF) techniques proposed via the Netflix

Prize [23] [24] with MLPs and non-linearities. NCF im-

plements one-hot encoded sparse features, four embedding

tables, and MF based sparse pooling.

• Wide and Deep (WnD) considers both sparse and dense
input features and is deployed in Google’s Play Store [4].

Dense input features are directly concatenated with the out-

put of one-hot encoded embedding lookups and a relatively

large Predict-FC stack produces output CTRs.

• Multi-Task Wide and Deep (MT-WnD) extends WnD

by evaluating multiple output objectives including CTR,

comment rate, likes, and ratings using a separate Predict-

FC stack for each objective. Leveraging multi-objective

modeling, MT-WnD enables a finer grained and improved

user experience [25].

• Deep Learning Recommendation Model (DLRM) is a

set of models from Facebook that differs from the afore-

mentioned examples with its large number of embedding

lookups [3]. Based on the configurations shown in [10]

varying the number of lookups per table and size of FC

layers yield three different architectures, DLRM-RMC1,

DLRM-RMC2, and DLRM-RMC3.

• Deep Interest Network (DIN) uses attention to model user

interests. DIN does not consider dense input features but

has tens of embedding tables of varying sizes. Smaller em-

bedding tables process one-hot encoded inputs while larger

ones (up to 109 rows) process multi-hot encoded inputs with

hundreds of lookups. Outputs of these embedding operations
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Fig. 3: Queries for personalized recommendation models fol-

low a unique distribution not captured by traditional workload

distributions (i.e. normal, log-normal) considered for web-

services. The heavy tail of query sizes found in production

recommendation services leads to unique design optimizations.

are combined as a weighted sum by a local activation unit

(i.e., attention) and then concatenated [5].

• Deep Interest Evolution Network (DIEN) captures evolv-

ing user interests over time by augmenting DIN with gated

recurrent units (GRUs) [6]. Inputs to the model are one-hot

encoded sparse features. Embedding vectors are processed

by attention-based multi-layer GRUs.

B. Service level requirement on tail latency

Personalized recommendation models are used in many

Internet services deployed at a global scale. They must service

a large number of requests across the datacenter while meeting

strict latency targets set by the Service Level Agreements

(SLAs) of various use cases. Thus, recommendation systems

are optimized for latency-bounded throughput measured as

the queries per second (QPS) that can be processed under

a p95 tail-latency requirement. Across different applications

(e.g., search, social-media, e-commerce) we find these latency

targets vary significantly, which can result in distinct system

design decisions. In this paper, we use the published targets

and profiled model runtime to set the tail-latency target. Details

on these tail latency targets are available in Section V.

C. Real-Time Query Serving for Recommendation Inference

DeepRecInfra takes into account two important dimensions

of real-time query serving: arrival rate and working set sizes.

Query Arrival Pattern: Arrival times for queries for

datacenter services are determined by the inter-arrival time

between consecutive requests. This inter-arrival time can be

modeled using a variety of distributions including uniform,

normal or Poisson distributions [22], [26]–[29]. Previous work

has shown that, these distributions can lead to different system

design optimizations [22], [29]. Following web-services, by

profiling the statistical distribution of recommendation services

in a production datacenter, we find that query arrival rates

follow a Poisson distribution [22], [26]–[28], [30].

Query Working Set Size Pattern: Not all recommendation
queries are created equal. The size of queries for recom-

mendation inference relates to the number of items to be

ranked for a given user. This translates to the amount of

work per inference. Given the potential number of items to

Model 1
Skylake

Model 2
Broadwell

Datacenter

Datacenter

Individual 
nodes

Individual 
nodes

Fig. 4: Performance distribution of recommendation inference

at datacenter scale to individual machines. Individual machines

follow inference distributions, excluding network and geo-

graphic effects, at the datacenter scale to within ∼ 9%.

be served depends heavily on users’ interaction with the web-

service, query sizes vary. While new hardware and software

optimizations are typically evaluated across an array of fixed

size batches, this is not the same as optimizing systems

where batch-sizes vary dynamically (i.e., recommendation). To

maximize efficiency of systems with dynamic batch-sizes, is

it important to optimize for the particular working set size

distribution (see Section IV).

Related work on designing system solutions for web ser-

vices typically assumes working set sizes of queries follow a

fixed, normal, or log-normal distribution [22]. However, Fig-

ure 3 illustrates that query sizes for recommendation exhibit

a heavier tail compared to canonical log-normal distributions.

Thus, while DeepRecInfra’s load generator supports a variety

of distributions, the remainder of this paper uses the query

size distribution found in a production datacenter (Figure 3).

D. Subsampling datacenter fleet with single-node servers

To serve potentially billions of users across the world,

recommendation models are typically run across thousands of

machines. However, it may not always be possible to deploy

design optimizations across a production-scale datacenter. We

show a handful of machines can be used to study and optimize

tail performance of recommendation inference. Figure 4 shows

the cumulative distribution of two different recommendation

models running on server-class Intel Skylake and Broadwell

machines. We find that the datacenter scale performance

(black) is within 10% of the distribution measured on a

handful of machines (red). Thus, tail-latency trends for rec-

ommendation inference across a subset of machines can be

representative of larger scale systems.

E. Putting it Altogether

To study at-scale characteristics of recommendation, it is

important to use representative infrastructure. This includes

representative models, query arrival rates, and query work-

ing set size distributions. Thus, we developed DeepRecInfra,

shown in Figure 5, by incorporating an extensible load gener-

ator to model query arrival rate and size patterns for recom-

mendation use cases. This enables efficient and representative

design space exploration catered to at-scale recommendation.
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Fig. 5: DeepRecInfra implements an extensible framework that considers industry-representative recommendation models, appli-

cation level tail latency targets, and real-time query serving (rate and size). Built upon DeepRecInfra, DeepRecSched optimizes

system throughput (QPS) under strict latency targets by optimzing per-request batch-size (request versus batch parallelism)

and accelerator query size threshold (parallelizing queries across specialized hardware).

DeepRecInfra is designed to enable future research for

at-scale recommendation inference. First, model architecture

parameters are specified at the command line. This includes

parameters such as the width/depth of DNN layers, number

of continuous and categorical input features, number of rows

and columns in embedding tables, number of sparse IDs per

lookup, and interaction operations between continuous and

categorical input features. Next, given the example implemen-

tations, additional recommendation models can be added to the

infrastructure. Finally, to model various at-scale effects, users

can configure the degree of model co-location, tail latency

targets, and query arrival rates and sizes.

IV. DEEPRECSCHED DESIGN

In this section, we present the design, implementation, and

evaluation of the proposed design – DeepRecSched– a recom-

mendation inference scheduler that optimizes latency-bounded

throughput for at-scale execution. Central to DeepRecSched is

the observation that working set sizes for recommendation

queries follow a unique distribution with a heavy tail. In-

tuitively, large queries limit the throughput (QPS) a system

can handle given a strict latency target. DeepRecSched is

tailor-designed to address this bottleneck with two design

optimizations. First is exploiting batch (data) versus request

(task) level parallelism. This is accomplished by splitting large

queries into multiple requests of smaller batch size; requests
are processed by parallel cores. This requires carefully balanc-

ing batch-level and SIMD-level parallelism, cache contention,

and the potential increase in queuing delay from a larger

number of smaller-sized requests. Second, large queries are

offloaded to specialized AI hardware in order to accelerate

at-scale recommendation inference. The decision to offload

queries onto specialized AI hardware must carefully balance

data communication costs, and parallelism across both server

class CPU cores and the accelerator for each model.

DeepRecSched optimizes system throughput across the

large and complex design space of recommendation use cases

encompassed by DeepRecInfra (i.e., models, latency targets,

query serving, hardware platforms). This is accomplished by

tuning the per-core batch-size (i.e., balancing batch versus

request-level parallelism on CPUs) and accelerator query size

threshold (i.e., offloading larger queries to specialized hard-

ware). In order to tune these parameters across the diverse set

of recommendation use cases, DeepRecSched implements a

hill-climbing based scheduling policy. The scheduler provides

an effective solution, given our observation of the convexity

of batch-size and accelerator partitioning problem, over more

complex control theoretic approaches, such as PID [31], [32].

We motivate the need for automated solutions given the

apparent model diversity (Section IV-A), optimize batch versus

request parallelism (Section IV-B), and modulate the query

offloading degree for specialized hardware (Section IV-C).

Figure 5 illustrates the proposed DeepRecSched design in

the context of DeepRecInfra.

A. Model diversity demands flexible optimization

The apparent diversity of the industry-representative rec-

ommendation models leads to varying, unique performance

bottlenecks. Figure 6 compares the performance characteristics

of recommendation models running on a server class Intel

Broadwell, shown as fractions of time spent on Caffe2 opera-

tors for a fixed batch size of 64. As expected, inference runtime

for models with high degrees of dense feature processing (i.e.,

DLRM-RMC3, NCF, WND, MT-WND) is dominated by the

MLP layers. On the other hand, inference runtime for models

dominated by sparse feature processing (i.e., DLRM-RMC1

and DLRM-RMC2) is dominated by embedding table lookups.

Interestingly, inference runtime for attention based recom-

mendation models is dominated by neither FC nor embedding

table operations. For instance, inference run time for DIN is

split between concatenation, embedding table, sum, and FC

operations. This is a result of the attention units, which (1)

concatenate user and item embedding vectors, (2) perform a

small FC operation, and (3) use the output of the FC operation

to weight the original user embedding vector. Similarly, the

execution time of DIEN is dominated by recurrent layers. This

is a result of fewer embedding table lookups whose outputs

are processed by a series of relatively large attention layers.

This design space is further expanded considering the

heterogeneity of CPUs found in production datacenters [9].

Recent work shows recommendation models are run on a
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Fig. 6: Operator breakdown of state-of-the-art personalized

recommendation models with a batch-size of 64. The large

diversity in bottlenecks leads to varying design optimizations.
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Performance variation across hardware platforms is due to

difference in micro-architectural features such as SIMD-width,

cache capacity, and clock frequency.

variety of server class CPUs such as Intel Broadwell and

Skylake [10]. While, Broadwell implements CPUs running at

2.4GHz with AVX-256 SIMD units and inclusive L2/L3 cache

hierarchies, Skylake cores run at 2.0GHz with AVX-512 units

and exclusive caches with a larger effective cache capacity.

Figure 7 shows the impact of CPU micro-architecture on

neural recommendation inference performance. We show the

performance of WnD, DIN, and DLRM-RMC2 on Broadwell

(BDW), as well as Skylake using both AVX-256 (SKL-

AVX2) and AVX-512 (SKL-AVX512) instructions. Given the

fixed operating frequency and cache hierarchy between SKL-

AVX2 and SKL-AVX512, the 3.0× performance difference

for WnD can be attributed to the better utilization of the

SIMD units. Similarly, given the fixed SIMD width, the 1.3×
performance difference between BDW and SKL-AVX2 is a

result of the larger L2 caches that help accelerate the Concat

operator with highly regular memory access pattern. Finally,

the performance difference between BDW and SKL-AVX2

instructions on DLRM-RMC2 is attributed to a 20% difference

in core frequency accelerating the embedding table operations.

Given the variety of operator and system bottlenecks, an
important design feature of DeepRecSched is to automatically
optimize request- versus batch-level parallelism and leverage
parallelism with specialized hardware.
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targets for DLRM-RMC (top) and models (bottom) i.e.,

i.e., DLRM-RMC2 (embedding-dominated), DLRM-RMC3

(MLP-dominated), DIEN (attention-dominated).

B. Optimal batch size varies

While all queries can be processed by a single core,

splitting queries across cores to exploit hardware parallelism,

is often advantageous. Thus, DeepRecSched splits queries into

individual requests. However, this sacrifices parallelism within

a request with a decreased batch size.

The optimal batch size that maximizes the system QPS

throughput varies based on (1) tail latency targets and (2)

recommendation models. Figure8 shows the achievable system

throughput (QPS) as we vary the per-core batch-size. Recall

that small batch-sizes (request parallelism) parallelizes a single

query across multiple cores while larger batch-sizes (batch

parallelism) processes a query on a single core. Figure 8

(top) illustrates that, for DLRM-RMC3, the optimal batch size

increases from 128 to 256 as the tail latency target is relaxed

from 66ms (low) to 100ms (medium). (See Section V for more

details on tail-latency targets.) Furthermore, Figure 8(bottom)

shows that the optimal batch size for DIEN (attention-based),

DLRM-RMC3 (FC heavy), and DLRM-RMC1 (embedding

table heavy) is 64, 128, and 256, respectively.

Note that the design space is further expanded when op-

timizing across the heterogeneous hardware platforms [9].

Following Figure 7, micro-architectural features across these

servers can impact the optimum tradeoff between request- and

batch-level parallelism. For example, higher batch sizes are

typically required to exploit the benefits of the wider SIMD

units in Intel Skylake [10]. Next, while inclusive cache (i.e.,

Broadwell) hierarchies simplify cache coherence protocols,

they are more susceptible to cache contention and performance

degradation from parallel cores [33], [34]. In the context of

recommendation, this can be achieved by trading off request

for batch parallelism. Section VI provides a more detailed

analysis into the implication of hardware heterogeneity on
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Fig. 9: GPU speedup over CPU for representative recommendation models. The batch-size at which GPUs start to outperform

CPUs and their speedup at large batch-sizes varies across models.

trading off request- versus batch-level parallelism.

C. Leverage parallelism with specialized hardware

In addition to balancing request- versus batch-level paral-

lelism on general purpose CPUs, in the presence of specialized

AI hardware, DeepRecSched improves system throughput by

offloading queries that can best leverage parallelism in the

available specialized hardware. We evaluate the role of accel-

erators with state-of-the-art GPUs.

Figure 9(top) illustrates the speedup of GPUs over a CPU

(single threaded) across the recommendation models at various

batch sizes. For each model, we illustrate the relative perfor-

mance of GPUs over CPUs at a unit batch-size, the batch-size

required to outperform CPU-only hardware platforms, and a

large batch-size of 1024. Given the higher compute intensity

and memory bandwidth, GPUs provide significant perfor-

mance benefits at higher batch sizes — especially for compute

intensive models. However, across the different classes of

recommendation models, there is large variation in (1) speedup

at large batch sizes (i.e. 1024) and (2) batch size required to

outperform CPU-only hardware platforms vary widely. This

is due to the overhead of transferring inputs from the CPU

to the GPU, which consumes a significant fraction of time.

For instance, as shown in Figure 9(bottom), across all batch

sizes, data loading time consumes on average 60∼80% of the

end-to-end inference time on the GPU for all models.

In addition to considering performance characteristics of

recommendation models on standalone systems, it is important

to analyze the impact of the dynamic query working set

size distributions. Figure 10 illustrates the execution time

breakdown for queries smaller than the p75th size versus larger

queries. Despite the long tail, the collection of small queries

constitute over half the CPU execution time. 25% of large
queries contribute to nearly 50% of total execution time. This

unique query size distribution with a long tail makes GPUs an

interesting accelerator target. Figure 10 shows that, across all

models, GPU can effectively accelerate the execution time of

large queries. While offloading the large queries can reduce

execution time, the amount of speedup varies based on the

model architecture. The optimal threshold for offloading varies

across models, motivating a design that can automatically tune

the offloading decision for recommendation inference.

Trading off processing queries on CPUs versus GPUs re-

quires careful optimization. Intuitively, offloading queries to

the GPU incurs significant data transfer overheads. To amortize

this cost, GPUs often require larger batch sizes to exhibit

speedup over CPUs, as shown in Figure 9 [35]. Consequently,

DeepRecSched improves system throughput by offloading the

largest queries for recommendation inference to the GPU.

This can be accomplished by tuning the query-size threshold.

Queries larger than this threshold are offloaded to the GPU

while smaller ones are processed on CPU cores.

Figure 11 illustrates the impact of query-size threshold (x-

axis) on the achievable QPS (y-axis) across a variety of rec-

ommendation models. The optimal threshold varies across the

three recommendation models, DLRM-RMC3, DLRM-RMC1,

and DIEN. In fact, we find that the threshold not only varies

across model architectures, but also across tail latency targets.

Note, the optimal query size thresholds take into account the

dynamic working set distribution found in Figure 3. Compared

to the batch-size at which the GPU demonstrates speedup over

the CPU (Figure 9), the optimal query-size threshold for both

DLRM-RMC1 and DIEN are higher — 47 vs. 320 for DLRM-

RMC1 and 101 vs. 512 for DIEN. Thus, systems that optimize

recommendation inference by offloading work to specialized

AI accelerators must consider the dynamic working set sizes

— a salient feature of DeepRecSched.

D. DeepRecSched Design Summary

Recall that production datacenters run a variety of rec-

ommendation models that evolve over time across hetero-

geneous hardware platforms with varying SLA targets [9].

Thus, automated solutions are needed to optimize batch- and

request-level parallelism, and offloading inference queries to

specialized hardware. We tailor-design DeepRecSched for at-

scale recommendation inference. For example, given the con-

vexity of the batch-size and accelerator offloading optimization

problem seen in Figure 8 and Figure 11, DeepRecSched im-

plements a hill-climbing based algorithm. Compared to more

complex control-theoretic approaches, such as PID controllers,

hill-climbing offers a simple, scalable, and effective solution.

In fact, we demonstrate the efficacy of DeepRecSched, by not

only evaluating it using DeepRecInfra but also deploying it in

a real production datacenter fleet (see Section VI for details).
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Fig. 11: The optimal query size threshold, and thus fraction of

queries processed by the GPU, varies across recommendation

models i.e., DLRM-RMC2 (embedding-dominated), DLRM-

RMC3 (MLP-dominated), DIEN (attention-dominated).

Given a particular recommendation model, hardware plat-

form, and tail latency target, DeepRecSched first tunes the

tradeoff between batch- versus request-level parallelism. Start-

ing with a unit batch-size, DeepRecSched gradually increases

the per-core batch-size in order to optimize system throughput.

Note that DeepRecSched is designed to perform the hill-

climbing based optimization during the initial warm up period

of launching a service. DeepRecSched then tunes the query-

size threshold for offloading queries to specialized hardware.

Starting with a unit query-size threshold (i.e., all queries are

processed on the accelerator), DeepRecSched again applies

hill-climbing to gradually increase the threshold until the

achievable QPS degrades. As what Section VI later shows,

by automatically tuning the per-request batch size and GPU

query-size threshold, DeepRecSched optimizes infrastructure

efficiency of at-scale recommendation across a variety of

different model architectures, tail latency targets, query-size

distributions, and the underlying hardware.

V. METHODOLOGY

We implement and evaluate DeepRecSched with Deep-

RecInfra across a variety of different hardware systems and

platforms. We then compare the performance and power

efficiency results with a production-scale baseline.

DeepRecInfra comprises three notable components:

• Model Implementation: We implement all the recommen-

dation models (Table I) in Caffe2 with Intel MKL as the

backend library for CPUs [36] and CUDA/cuDNN 10.1

Model Runtime Bottleneck SLA target
DLRM-RMC1 Embedding dominated 100ms
DLRM-RMC2 Embedding dominated 400ms
DLRM-RMC3 MLP dominated 100ms

NCF MLP dominated 5ms
WND MLP dominated 25ms

MT-WND MLP dominated 25ms
DIN Embedding + Attention dominated 100ms

DIEN Attention-based GRU dominated 35ms

TABLE II: Summarizing performance implications of differ-

ent personalized recommendation and latency targets used to

illustrate design space tradeoffs for DeepRecSched.

for GPUs [37]. All CPU experiments are conducted with

a single Caffe2 worker and Intel MKL thread.

• SLA Latency Targets: Table II presents the tail latency

targets for each of the recommendation models [4]–[7], [10].

For instance, the Google Play store imposes an SLA target of

tens of milliseconds on WnD [4], [11]. On the other hand,

Facebook’s social media platform requires DLRM-RMC1,

DLRM-RMC2, and DLRM-RMC3 have an SLA target

of hundreds of milliseconds [10]. Alibaba’s e-commerce

platform requires DIN and DIEN have an SLA target of tens

of milliseconds [5], [6]. To explore the design tradeoffs over

a range of latency targets, we consider three latency targets

for each model — Low, Medium, and High — where Low

and High tail latency targets are set to be 50% lower and

50% higher than that of Medium, respectively.

• Real-Time Query Patterns: Query patterns in DeepRecIn-

fra are configurable on two axes: arrival rate and size. The

arrival pattern is fit to a Poisson distribution whereas sizes

are drawn from the production distribution (Figure 3).

Experimental System Setup. To consider the implications

of hardware heterogeneity found in datacenter [9], [10], [38],

we evaluate DeepRecSched with two generations of dual-

socket server-class Intel CPUs: Broadwell and Skylake. Broad-

well comprises 28 cores running at 2.4GHz with AVX-2 SIMD

units and implements an inclusive L2/L3 cache hierarchy. Its

TDP is of 120W. Skylake comprises of 40 cores running

at 2.0GHz with AVX-512 SIMD units and implements an

exclusive L2/L3 cache hierarchy. Its TDP is of 125W.

To consider the implications of AI hardware accelerators,

we extend the design space to take into account a GPU

accelerator model based on real empirical characterization.

The accelerator performance model is constructed with the

performance profiles of each recommendation model across

the range of query sizes over a real-hardware GPU — server-

class NVIDIA GTX 1080Ti with 3584 CUDA cores, 11GB of

DDR5 memory, and optimized cuDNN backend library (see

Figure 9). This includes both data loading and model computa-

tion [39]–[44], capturing the performance-critical components

of the end-to-end recommendation inference.

Production-scale baseline. We compare DeepRecSched to

the baseline that implements a fixed batch size configuration.

This fixed batch size configuration is typically set by splitting

the largest query evenly across all available cores on the

underlying hardware platform. Given the maximum query
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Fig. 12: Compared to a static scheduler based on production recommendation services, the top figure shows performance,

measured in system throughout (QPS) across a range of latency targets, while the bottom shows power efficiency (QPS/Watt),

for DeepRecSched-CPU and DeepRecSched-GPU.

size of 1000 (Figure 3), the static batch size configuration

is determined as 25 for a server-class 40-core Intel Skylake.

VI. DEEPRECSCHED EVALUATION

This section presents the performance and power effi-

ciency improvements of DeepRecSched running on CPUs

(DeepRecSched-CPU) and GPUs (DeepRecSched-GPU) over

the baseline across a vast and complex design space, including

all eight state-of-the-art recommendation models using Deep-

RecInfra. Next, we detail the benefits of DeepRecSched by

diving into (1) request- versus batch-level parallelism, (2)

a case study of demonstrating the optimizations in a real

production datacenter, and (3) parallelization opportunities of

offloading requests to specialized hardware.

Performance. Figure 12(top) compares the throughput per-

formance of DeepRecSched-CPU and DeepRecSched-GPU

versus a baseline static scheduler across the three tail latency

configurations, all normalized to the measured QPS at the low
tail latency case of the baseline. Overall, DeepRecSched-CPU

achieves 1.7×, 2.1×, and 2.7× higher QPS across all models

for the low, medium, and high tail latency targets, respectively.

DeepRecSched-CPU is able to increase the overall system

throughput by optimizing batch size configuration. Further-

more, DeepRecSched-GPU increases performance improve-

ment to 4.0×, 5.1×, and 5.8× at the low, medium, and high tail

latency targets, respectively. Thus, parallelizing requests across

general-purpose CPUs and specialized hardware provides ad-

ditional performance improvement for recommendation.

Power efficiency. Figure 12(bottom) compares the QPS-

per-watt power efficiency of DeepRecSched-CPU and

DeepRecSched-GPU by again normalizing the measured

QPS/Watt to the low tail latency case of the baseline static

scheduler. Given higher performance under the TDP power

budget as the baseline, DeepRecSched-CPU achieves 1.7×,

2.1×, and 2.7× higher QPS/Watt for all models under the

low, medium, and high tail latency targets, respectively. Ag-

gregated across all models, DeepRecSched-GPU improves the

power efficiency improvement to 2×, 2.6×, and 2.9× for

each latency target. Compared to the performance improve-

ment, DeepRecSched-GPU provides marginal improvement in

power efficiency due to the overhead of GPU acceleration.

In fact, while DeepRecSched-GPU improves system QPS

across all recommendation models and latency targets, com-

pared to DeepRecSched-CPU, it does not globally improve

QPS/Watt. In particular, the power efficiency improvement of

DeepRecSched-GPU is more pronounced for compute inten-

sive models (i.e., WND, MT-WND, NCF). On the other hand,

for memory intensive models (i.e., DLRM-RMC1, DIN), the

power overhead for offloading recommendation inference to

GPUs outweighs the performance gain, degrading the overall

power efficiency. Thus, judicious optimization of offloading

queries across CPUs and specialized AI hardware can improve

infrastructure efficiency for recommendation at-scale.

A. Balance of Request and Batch Parallelism

Here we take a deep into how DeepRecSched-CPU im-

proves QPS by balancing request- versus batch-level par-

allelism across varying (1) latency targets, (2) query size

distributions, (3) models, and (4) hardware platforms.

Optimizing across SLA targets. Figure 13(a) illustrates the

tradeoff between request- and batch-level parallelism across

varying tail latency targets for DLRM-RMC1. Under lower,

stricter tail latency targets, QPS is optimized at lower batch

sizes — favoring request level parallelism. On the other

hand, at more relaxed tail latency targets, DeepRecSched-CPU

finds the optimal configuration to be at a higher batch size

— favoring batch-level parallelism. For instance, using the

production working set size distribution, the optimal batch-size

at target tail latencies of 60ms and 120ms are 128 and 1024

respectively. Intuitively, this is a result of achieving overall

higher system throughput with larger batch-sizes at more

relaxed latency targets. As shown in Figure 12(top), optimizing

this per-request batch size yields DeepRecSched-CPU’s QPS

improvements over the static baseline across latency targets.

Optimizing across query size distributions Figure 13(a)

also shows the optimal batch size, for DLRM-RMC1, varies
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Fig. 13: Exploiting the unique characteristics of at-scale recommendation yields efficiency improvements given the optimal

batch size varies across SLA targets and query size distributions (left), models (middle), and hardware platforms (right).

across query working set size distributions (lognormal and

the production distribution). The optimal batch-size across all

tail latency targets is strictly lower for lognormal than the

query size distribution found in production recommendation

use cases. This is a result of, as shown in Figure 3, query

sizes in production recommendation use cases following a

distribution with a heavier tail. In fact, applying optimal

batch-size configuration based on the lognormal query size

distribution to the production distribution degrades the perfor-

mance of DeepRecSched-CPU by 1.2×, 1.4×, and 1.7× at

low, medium, and high tail-latencies for DLRM-RMC1. Thus,

built ontop of DeepRecInfra, DeepRecSched-CPU carefully

optimizes request verus batch-level parallelism for recommen-

dation inference in production datacenters.

Optimizing across recommendation models. Figure 13(b)

illustrates that the optimal batch size varies across recommen-

dation models with distinct compute and memory character-

istics. Here, we consider two compute intensive models (e.g.,

DLRM-RMC3, WnD) and two memory intensive models (e.g.,

DLRM-RMC1, DIN). We find that compute intensive models

are typically optimized with lower batch-sizes as compared

to memory intensive models. For example, at the high SLA

targets, DLRM-RMC3 and WnD have an optimal batch size of

256 and 128, respectively. On the other hand, DLRM-RMC1

and DIN are optimized at a larger batch size of 1024. This is

a result of the compute intensive models being accelerated by

the data-parallel SIMD units (i.e., AVX-512 in Intel Skylake,

AVX-256 in Intel Broadwell). Thus, throughput for compute

intensive models is maximized by fully utilizing the data-

parallel SIMD units and parallelizing queries into multiple

requests across the chip-multiprocessor cores.

While higher throughput is achieved at smaller batch-

sizes for compute intensive models, memory intensive models

require larger batch sizes. This is because the primary per-

formance bottleneck of models with heavy embedding table

accesses lies in the DRAM bandwidth utilization. In order

to saturate, and fully utilize, the per-core memory band-

width, memory intensive recommendation models must be

run with higher batch-sizes. Thus, in addition to request level

parallelism, memory bandwidth utilization can be improved

significantly by running recommendation inference at a higher

batch size. By exploiting characteristics of the models to opti-

mize the per-request batch size, DeepRecSched-CPU achieves

higher QPS across the various recommendation models.

Optimizing across hardware platforms. Figure 13(c)

shows the optimal batch size, for DLRM-RMC3, varies across

server architectures (Intel Broadwell and Skylake machines).

The optimal batch size, across all tail-latency targets, is strictly

higher on Intel Broadwell compared to Skylake. For example,

at a latency target of 175ms, the optimal batch-size on Intel

Broadwell and Skylake is 1024 and 256, respectively. This is

a result of the varying cache hierarchies on the two platforms.

In particular, Intel Broadwell implements an inclusive L2/L3

cache hierarchy while Intel Skylake implements an exclusive

L2/L3 cache hierarchy. As a result, Intel Broadwell suffers

from higher cache contention with more active cores leading

to performance degradation. For example, at a latency target of

175ms and per-request batch sizes of 16 (request-parallel) and

1024 (batch-parallel), Intel Broadwell has an L2 cache miss

rate of 55% and 40% respectively. To compensate for this per-

formance penalty, DeepRecSched-CPU runs recommendation

models with higher batch-sizes — fewer request and active

cores per query — on Intel Broadwell.

Overall, DeepRecSched enables a fine balance between
request vs. batch-level parallelism across not only varying tail
latency targets, query size distributions, and recommendation
models, but also the underlying hardware platforms.

B. Tail Latency Reduction for At-Scale Production Execution

Following the evaluations using DeepRecInfra, we deploy

the proposed design and demonstrate that the optimizations

translate to higher performance in a real production datacenter.

Figure 14 illustrates the impact of varying the batch-size on

the measured tail latency of recommendation models running

in a production datacenter. Experiments are conducted using

production A/B tests with a portion of real-time datacenter

traffic to consider end-to-end system effects including load-

balancing and networking. The A/B tests run on a cluster

of hundreds of server-class Intel CPUs running a wide col-

lection of recommendation models used in the production

datacenter fleet. The baseline configuration is a fixed batch-

size, deployed in a real production datacenter fleet, set coarsely

optimizing for a large collection of models. Optimizing the

batch- versus request-parallelism at a finer granularity, by

taking into account particular model architectures and hard-

ware platforms, enables further performance gains. To enable

this finer granularity optimization and account for the diurnal

production traffic asf well as intra-day query variability, we

deploy and evaluate DeepRecSched over the course of 24

hours. Compared to the baseline configuration, the optimal
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Fig. 14: Exploiting the request vs. batch-level parallelism opti-

mization demonstrated by DeepRecSched in a real production

datacenter improves performance of at-scale recommendation

services. Across models and servers, optimizing batch size

reduces p95 and p99 latency by 1.39× (left) and 1.31× (right).

batch size provides a 1.39× and 1.31× reduction in p95

and p99 tail latencies, respectively. This reduction in the tail

latency can be used to increase system throughput (QPS) of

the cluster of machines.

C. Leverage Parallelism with Specialized Hardware

In addition to trading off request vs. batch-level parallelism,

DeepRecSched-GPU leverages additional parallelism by of-

floading recommendation inference queries to GPUs.

Performance improvements. GPUs are often treated as

throughput-oriented accelerators. However, in the context of

personalized recommendation, we find that GPUs can unlock

lower tail latency targets unacheivable by CPUs. Figure 15(a)

illustrates the performance impact of scheduling requests

across both CPUs and GPUs. While the lowest achievable tail-

latency targets for DLRM-RMC1 on CPUs is 57ms, GPUs can

achieve a tail-latency target of as low as 41ms (1.4× reduc-

tion). This is a result of recommendation models exhibiting

high compute and memory intensity, as well as the heavy tail

of query sizes in production use cases (Figure 3).

Next, in addition to achieving lower tail latencies, par-

allelization across both the CPU and the specialized hard-

ware increases system throughput. For instance, Figure 15(a)

shows that across all tail-latency targets, DeepRecSched-GPU

achieves higher QPS than DeepRecSched-CPU. This is as a

result of the execution of the larger queries on GPUs, enabling

higher system throughput. Interestingly, the percent of work

processed by the GPU decreases with higher tail latency tar-

gets. This is due that, at a low latency target, DeepRecSched-

GPU optimizes system throughput by setting a low query size

threshold and offloads a large fraction of queries to the GPU.

Under a more relaxed tail-latency constraint, more inference

queries can be processed by the CMPs. This leads to a higher

query size threshold for DeepRecSched-GPU. At a tail latency

target of 120ms, the optimal query size threshold is 324 and the

percent of work processed by the GPU falls to 18%. As shown

in Figure 12(top), optimizing the query size threshold yields

DeepRecSched-GPU’s system throughput improvements over

the static baseline and DeepRecSched-CPU across the different

tail latency targets and recommendation models.

Infrastructure efficiency implications. While GPUs can

enable lower latency and higher QPS, power efficiency is not

CPU

% work processed 
by GPU

GPU

GPU

CPU

CPU 
optimal

GPU 
optimal

Fig. 15: (Top) System throughput increases by scheduling

queries across both CPUs and GPUs. The percent of work

processed by the GPU decreases at higher tail latency targets.

(Bottom) While QPS strictly improves, the optimal configura-

tion based on QPS/Watt, varies based on tail latency targets.

always optimized with GPUs as the specialized AI accelera-

tor. For instance, Figure 15(b) shows the QPS/Watt of both

DeepRecSched-CPU and DeepRecSched-GPU for DLRM-

RMC1, across a variety of tail latency targets. At low tail la-

tency targets, QPS/Watt is maximized by DeepRecSched-GPU

— parallelizing queries across both CPUs and GPUs. How-

ever, under more relaxed tail-latency targets, we find QPS/Watt

is optimized by processing queries on CPUs only. Despite the

additional power overhead of the GPU, DeepRecSched-GPU

does not provide commensurate system throughput benefits

over DeepRecSched-CPU at higher tail latencies.

More generally, power efficiency is co-optimized by con-

sidering both the tail latency target and the recommendation

model. For instance, Figure 12(b) illustrates the power effi-

ciency for the collection of recommendation models across

different tail latency targets. We find that DeepRecSched-

GPU achieves higher QPS/Watt across all latency targets for

compute-intensive models (i.e., NCF, WnD, MT-WnD) — the

performance improvement of specialized hardware outweighs

the increase in power footprint. Similarly, for DLRM-RMC2

and DIEN, DeepRecSched-GPU provides marginal power ef-

ficiency improvements. On the other hand, the optimal con-

figuration for maximizing power efficiency of DLRM-RMC1

and DLRM-RMC3 varies based on the tail latency target.

As a result, Figure 12(b) shows that in order to maximize

infrastructure efficiency, it is important to consider model

architecture and tail latency targets.

D. Datacenter provisioning implications.

In addition to the scheduling optimizations offered by

DeepRecSched, the analysis can be applied to study provi-

sioning strategies for datacenters running the wide collection

of recommendation models. Figure 16 considers the ratio of

CPU to GPUs, in order to minimize total power consumption,

as we vary tail latency targets (left) and GPU power efficiency

(right). Here, all models serve an equal amount of traffic

(QPS); the tradeoffs will vary based on the distribution of
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Fig. 16: Evaluating datacenter provisioning strategies for rec-

ommendation in order optimize overall power footprint. (Left)

Increasing tail-latency reduces the fraction of GPUs. (Right)

Improving GPU TDP, such as with more power efficient

accelerators, increases the fraction of GPUs.

models deployed. Figure 16 shows higher ratios of GPUs are

optimal under lower latency targets. Intuitively, this follows

Figure 15 as GPUs enable lower latency recommendation use

cases by accelerating the large queries. However, under more

relaxed tail latency (i.e., SLA) targets it is optimal deploy

higher ratios of CPUs for recommendation inference. Note, tail

latency targets vary across applications as shown in Table II.

In addition to the impact of varying SLA targets, accel-

erator power efficiency also impacts datacenter provisioning.

Figure 16 (right) considers the impact of varying the power

efficiency of the NVIDIA GTX 1080 Ti GPU. Intuitively,

improving power efficiency makes accelerators more appeal-

ing for recommendation inference. Thus, designing efficient

GPUs and accelerators may enable specialized hardware for

recommendation inference at the datacenter scale.

VII. RELATED WORK

While the system and computer architecture community has

devoted significant efforts to characterize and optimize deep

neural network (DNN) inference efficiency, relatively little

work has explored running recommendation at-scale.

DNN accelerator designs. Currently-available benchmarks

for DNNs primarily focus on FC, CNNs, and RNNs [35], [45]–

[47]. Building upon the performance bottlenecks, a variety

of software and hardware solutions have been proposed to

optimize traditional DNNs [13]–[15], [17], [48]–[68]. While

the benchmarks and accelerator designs consider a variety of

DNN use cases and systems, prior solutions do not apply to

the wide collection of state-of-the-art recommendation models

presented in this paper. For example, recent characterization of

Facebook’s DLRM implementation demonstrates that DNNs

for recommendation have unique compute and memory char-

acteristics [3], [10]. These implementations are included, as

DLRM-RMC 1-3, within DeepRecInfra. In addition, MLPerf,

an industry-academic benchmark suite for machine learning,

provides NCF as a training benchmark [28]. (MLPerf is devel-

oping a more representative recommendation benchmark for

the next submission round [69], [70]). In addition, an important

aspect of the end-to-end infrastructure presented in the paper

is accounting for at-scale request characteristics (arrival rate

and size), particularly important for recommendation.

Optimizations for personalized recommendation. A few

recent works explore design optimization opportunities for rec-

ommendation models. For instance, TensorDimm proposes a

near memory processing solution for recommendation models

similar to DLRM-RMC 1-3 and NCF [18]. Ginart et al. and Shi

et al. [71], [72] compresses embedding tables in recommenda-

tion models while maintaining the model accuracy. In contrast,

this paper optimizes the at-scale inference performance of a

wider collection of recommendation models by considering

the effect of inference query characteristics.

Machine learning at-scale. Finally, prior work has ex-

amined the performance characteristics and optimizations for

ML running on at-scale, warehouse scale machines. Sirius

and DjiNN-and-Tonic explore the implications of ML in

warehouse-scale computers [26], [73]. However, the unique

properties of recommendation inference and query patterns

have not been the focus of the prior work. Li et al. [22] exploit

task and data-level parallelism to meet SLA targets of latency

critical applications i.e., Microsoft’s Bing search. Further-

more, recent work has open-sourced benchmarks for studying

the performance implication of at-scale execution of latency

critical datacenter workloads and cloud micro-services [27],

[30]. This paper provides an end-to-end infrastructure (Dee-

pRecInfra) and design solutions (DeepRecSched) specialized

for recommendation inference. DeepRecInfra models real-

time query patterns, representative of the distinct working set

size distribution. The unique characteristics provide significant

performance improvement for at-scale recommendation.

VIII. CONCLUSION

Given the growing ubiquity of web-based services that use

recommendation algorithms, such as search, social-media, e-

commerce, and video streaming, neural personalized recom-

mendation comprises the majority of AI inference capacity and

cycles in production datacenter. We propose DeepRecInfra,

an extensible infrastructure to study at-scale recommendation

inference comprising eight state-of-the-art recommendation

models, SLA targets, and query patterns. Built upon this

framework, DeepRecSched exploits the unique characteristics

of at-scale recommendation inference in order to optimize

system throughput, under strict tail latency targets, by 2×. In

a real production datacenter, DeepRecSched achieves similar

performance benefits. Finally, through judicious optimizations,

DeepRecSched can leverage additional parallelism by offload-

ing queries across CPUs and specialized AI hardware to

achieve higher system throughput and infrastructure efficiency.
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