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Abstract—The widespread application of deep learning has
changed the landscape of computation in data centers. In
particular, personalized recommendation for content ranking is
now largely accomplished using deep neural networks. However,
despite their importance and the amount of compute cycles they
consume, relatively little research attention has been devoted to
recommendation systems. To facilitate research and advance the
understanding of these workloads, this paper presents a set of
real-world, production-scale DNNs for personalized recommen-
dation coupled with relevant performance metrics for evaluation.
In addition to releasing a set of open-source workloads, we
conduct in-depth analysis that underpins future system design
and optimization for at-scale recommendation: Inference latency
varies by 60% across three Intel server generations, batching
and co-location of inference jobs can drastically improve latency-
bounded throughput, and diversity across recommendation mod-
els leads to different optimization strategies.

I. INTRODUCTION

Deep learning has become a cornerstone in many production-
scale data center services. As web-based applications continue
to expand globally, so does the amount of compute and storage
resources devoted to deep learning training and inference [18],
[32], [38]. Personalized recommendation is an important class
of these services. Deep learning based recommendation systems
are broadly used throughout industry to predict rankings for
news feed posts and entertainment content [22], [26]. For
instance, in 2018, McKinsey and Tech Emergence estimated
that recommendation systems were responsible for driving up
to 35% of Amazon’s revenue [17], [53], [58].

Figure 1 illustrates the fraction of AI inference cycles spent
across recommendation models in a production data center.
DNN-based personalized recommendation models comprise up
to 79% of AI inference cycles in a production-scale data center.
While potentially hundreds of recommendation-models are
used across the data center, we find that three recommendation
model classes, RMC1, RMC2, and RMC3, consume up to 65%
of AI inference cycles. These three types of recommendation
models follow distinct recommendation model architectures
that result in different performance characteristics and hardware
resource requirements, and thus are the focus of this paper.

1Harvard University, work done while at Facebook.
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Fig. 1: RMC1, RMC2, and RMC3 (studied in this paper)
represent three classes of recommendation models that
consume 65% of AI inference cycles in Facebook’s pro-
duction data center. Recommendation models in general
comprise over 79% of AI inference cycles. Remaining
cycles are devoted to non-recommendation use cases (e.g.,
CNN, RNNs).

The systems and computer architecture community has
made significant strides in optimizing the performance, en-
ergy efficiency, and memory consumption of DNNs. Recent
solutions span across the entire system stack including, effi-
cient DNN architectures [19], [33], [35], reduced precision
datatypes [21], [28], [30], [39], [49], heavily parallelized
training/inference [27], [60], and hardware accelerators [14],
[29], [38], [49], [61]. These solutions primarily target con-
volutional (CNN) [33], [50] and recurrent (RNN) [10], [11]
neural networks. However, these optimization techniques often
cannot be applied to recommendation models as the models
are intrinsically different, introducing unique memory and
computational challenges.

Finally, publicly available recommendation benchmarks are
not representative of production systems. Compared to available
recommendation benchmarks, i.e. neural-collaborative filtering
(MLPerf-NCF [5], [44]), production-scale models differ in
three important features: application-level constraint (use case),
embedding tables (memory intensive), fully-connected layers
(compute intensive). First, production recommendation use
cases require processing requests with high throughput under
strict latency constraints; to meet these application requirements,
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Fig. 2: At-scale recommendation models (RMC1, RMC2,
RMC3) have unique compute (FLOPs) and memory (bytes
read) requirements compared to CNNs, RNNs, and open-
source recommendation models like MLPerf-NCF [5], [44].

production systems exploit high degrees of data-level and
task-level parallelism not considered in publicly available
benchmarks. Second, production-scale recommendation models
have orders of magnitude more embeddings, resulting in larger
storage requirements and more irregular memory accesses.
Finally, MLPerf-NCF implements fewer and smaller fully-
connected (FC) layers requiring fewer FLOPs (Figure 2). The
insights and solutions derived using these smaller recommen-
dation models may not be applicable to nor representative of
production systems.

In this paper, we present a set of production-scale personal-
ized recommendation models. First, we identify quantitative
metrics to evaluate the performance of these recommendation
workloads. Next, we design a set of synthetic recommendation
models to conduct detailed performance analysis. Because
inference in our data center is run across a variety of
CPUs [32], we focus the design tradeoff studies on Intel
Haswell, Broadwell, and Skylake servers. Finally, we study
performance characteristics of running recommendation models
in production-environments. The insights from this analysis
can be used to motivate broader system and architecture
optimizations for at-scale recommendation. For example, we
can maximize latency-bounded throughput by exploiting server
heterogeneity when scheduling inference requests.

The in-depth description and characterization presented in
this paper of production-scale recommendation models provides
the following insights for future system design:
• The current practice of using only latency for benchmarking

inference performance is insufficient. At the data center
scale, the metric of latency-bounded throughput is more
representative as it determines the number of items that can
be ranked given service level agreement (SLA) requirements
(Section III).

• Inference latency varies across several generations of Intel
servers (Haswell, Broadwell, Skylake) that co-exist in data
centers. With unit batch size, inference latency is optimized
on high-frequency Broadwell machines. On the other hand,
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Fig. 3: Simplified model-architecture of recommendation
models. Inputs to the model are a collection of dense and
sparse features. Sparse features, unique to recommenda-
tion models, are transformed to a dense representation
using embedding tables (blue). The number/size of em-
bedding tables, number of sparse feature (ID) lookups per
table, depth/width of Bottom-FC and Top-FC layers varies
based on the use-case.

batched inference (throughput) is optimized with Skylake
as batching increases the compute density of FC layers.
Compute-intensive recommendation models are more read-
ily accelerated with AVX-512 instructions in Skylake, as
compared to AVX-2 in Haswell and Broadwell (Section V).

• Co-locating multiple recommendation models on a single
machine can improve throughput. However, this introduces
a tradeoff between single model latency and aggregated
system throughput. We characterize this tradeoff and find
that processors with inclusive L2/L3 cache hierarchies
(i.e., Haswell, Broadwell) are particularly susceptible to
latency degradation due to co-location. This introduces
additional scheduling optimization opportunities in data
centers (Section VI).

• Across at-scale recommendation models and different server
architectures, the fraction of time spent on compute intensive
operations, like FC, varies from 30% to 95%. Thus, existing
solutions for accelerating FC layers only [29], [38], [49],
[61] will translate to limited inference latency improvement
for end-to-end recommendation. This is especially true of
recommendation models dominated by embedding tables
(Section V).
Open-source: To facilitate future work on at-scale recom-

mendation systems for the systems and computer architecture
community, Facebook has open-sourced a suite of synthetic
models, representative of production use cases2. Together with
the detailed performance analysis performed in this paper, the
open-source implementations can be used to further understand
the compute requirements, storage capacity, and memory access
patterns, enabling optimization and innovation for at-scale
recommendation systems.

2https://ai.facebook.com/blog/dlrm-an-advanced-open-source-deep-
learning-recommendation-model/

https://ai.facebook.com/blog/dlrm-an-advanced-open-source-deep-learning-recommendation-model/
https://ai.facebook.com/blog/dlrm-an-advanced-open-source-deep-learning-recommendation-model/
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Fig. 4: Breakdown of data center-wide cycles by operators
in recommendation and non-recommendation (e.g., CNN,
RNNs) models.

II. BACKGROUND

This section provides an overview of the personalized recom-
mendation task and the architecture of at-scale recommendation
models. We also compare recommendation models to other
DNNs, in terms of their compute density, storage capacity, and
memory access patterns.

A. Recommendation Task

Personalized recommendation is the task of recommending
new content to users based on their preferences [22], [26].
Estimates show that up to 75% of movies watched on Netflix
and 60% of videos consumed on YouTube are based on
suggestions from their recommendation systems [17], [53],
[58].

Central to these services is the ability to accurately, and
efficiently rank content based on users’ preferences and
previous interactions (e.g., clicks on social media posts,
ratings, purchases). Building highly accurate personalized
recommendation systems poses unique challenges as user
preferences and past interactions are represented as both dense
and sparse features [25], [45].

For instance, in the case of ranking videos (e.g., Netflix,
YouTube), there may be tens of thousands of videos that
have been seen by millions of viewers. However, individual
users interact with only a handful of videos. This means
interactions between users and videos are sparse. Sparse
features typically represent categorical inputs. For example,
for ranking videos, a categorical input may represent the type
of device or users’ preferences for a genre of content [16].
Dense features (e.g., user age) represent continuous inputs.
Categorical inputs are encoded as multi-hot vectors where a
1 represents positive interactions. Given the potentially large
domain (millions) and small number of interactions (sparse),
multi-hot vectors must first be transformed into real-valued
dense vectors using embedding table operations. Sparse features
not only make training more challenging but also require
intrinsically different operations (e.g., embedding tables) which
impose unique compute, storage capacity, and memory access
pattern challenges.

B. Recommendation Models

Figure 3 shows a simplified architecture of state-of-the-
art DNNs for personalized recommendation models. (More
advanced examples can be in found [1], [13].) The model

Fig. 5: Compared to FC, CNN, and RNN layers, embedding
table operations (SparseLengthsSum, SLS, in Caffe2), seen
in recommendation systems, exhibit low compute density
(left) and high LLC cache miss rate (right).

comprises a variety of operations such as FC layers, embedding
tables (which transform sparse inputs to dense representations),
Concat, and non-linearities, such as ReLU. At a high-level,
dense and sparse input features are separately transformed
using FC layers and embedding tables respectively. The outputs
of these transformations are then combined and processed
by a final set of FC layers. Figure 4 illustrates the cycles
breakdown of these operators across Facebook’s data centers.
Given their unique architecture, the cycle breakdown of recom-
mendation models follows a distinct distribution compared to
non-recommendation models (e.g., CNNs, RNNs). In particular,
FC, SLS and Concat comprise over 45% of recommendation
cycles. Note that, SLS (embedding table operations in Caffe2)
alone comprise nearly 15% of AI inference cycles across
Facebook’s data centers — 4× and 20× more than CNNs
and RNNs.

Execution Flow: The inputs, for a single user and single
post, to recommendation models are a set of dense and sparse
features. The output is the predicted click-through-rate (CTR)
of the user and post. Dense features are first processed by a
series of FC layers, shown as the Bottom-FCs in Figure 3.
Recall that sparse features represent categorical inputs that can
be encoded as multi-hot vectors. As the number of categories
(i.e., size of multi-hot vectors) is large, each vector is encoded
as a list of non-contiguous, sparse IDs.

For a single user-item input pair, multiple vectors of such
sparse IDs must first be made dense. While the sparse to
dense transformation can be accomplished using FC layers, the
compute demands of doing so would be significant. Instead, we
use embedding tables. Each vector is paired with an embedding
table, as shown in Figure 3, and each sparse ID is used to
look-up a unique row in the embedding table. (Pseudo-code in
Algorithm 1). The rows of the embedding are then combined
into a single vector, typically with a dimension of 32 or 64,
using element-wise operations.

Finally, embedding vectors and the output of the Bottom-FC
layers are concatenated, and processed by the Top-FC layers
shown in Figure 3. The output is a single value representing
the predicted CTR. User-post pairs with the highest predicted
CTR will be prioritized.

Processing multiple posts: At the data center scale, rec-
ommendations for many users and posts must be ranked
simultaneously. Thus, it is important to note that the vectors



Algorithm 1 SparseLengthsSum (SLS) pseudo-code
1: Emb← Embedding Table: R(∼millions) x C(∼tens)
2: Lengths← Vector: K . slices of IDs
3: IDs← Vector: M (∼tens) . non-contiguous
4: Out← V ector : K× C
5:
6: CurrentID = 0;OutID = 0
7: procedure SLS(Emb, Lengths, IDs)
8: for L in Lengths do
9: for ID in IDS[CurrentID: CurrentID+L]: do

10: Emb vector = Emb[ID]
11: for i in range(C): do
12: Out[OutID][i]+ = Emb vector[i]
13: end for
14: end for
15: OutID = OutID+1;CurrentID = CurrentID+L
16: end for
17: return Out
18: end procedure

of sparse IDs shown in Figure 3 correspond to inputs for a
single user and single post. To compute the CTR of many
user-post pairs at once, requests are batched to improve overall
throughput.

The depth and width of FC layers, number and size of
embedding tables, number of sparse IDs per input, and typical
batch-sizes depend on the use case of the recommendation
model (see Section III for more details).

C. Embedding Tables

A key distinguishing feature of DNNs for recommendation
systems, compared to CNNs and RNNs, is the use of embedding
tables. As shown in Figure 3, embedding tables are used
to transform sparse input features to dense ones. However,
the embedding tables impose unique challenges to efficient
execution in terms of their large storage capacity, low compute
density, and irregular memory access pattern.

Large storage capacity The size of a single embedding
table seen in production-scale recommendation models varies
from tens of MBs to several GBs. Furthermore, the number
of embedding tables varies from 4 to 40, depending on
the particular use case of the recommendation model. (See
Section III for details). In aggregate, embedding tables for
a single recommendation model can consume up to tens
of GB of memory. Thus, systems running production-scale
recommendation models require large, off-chip storage such
as DRAM or dense non-volatile memory [25].

Low compute intensity As shown in Figure 5(left), Sparse-
LengthsSum (SPS) has a significantly lower compute intensity,
e.g. operational intensity, (0.25 FLOPs/Byte) compared to
RNN (5.5 FLOPs/Byte), FC (18 FLOPs/Byte), and CNN (141
FLOPs/Byte) layers. As shown in Figure 5, compared to typical
FC, RNN, and CNN layers, embedding tables exhibit low
compute density. (The RNN layer considered is typically found
in recurrent NLP models while the FC and CNN layers are
ones found in ResNet50 [33]). Recall that the embedding table
operation (implemented as the SparseLengthsSum operator
in Caffe2 [2]) entails reading a small subset of rows in the
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Fig. 6: Contents is ranked in two hierarchical steps:
filtering and ranking. Filtering reduces the number of
total items to a smaller subset using lightweight machine
learning techniques or smaller DNN-based models (RMC1).
Ranking performs finer grained recommendation using
larger models (e.g., RMC2, RMC3).

embedding table. The rows, indexed based on input sparse
IDs, are then summed. While the entire embedding table is not
read for a given input, the accesses follow a highly irregular
memory access pattern (Pseudo-code in Algorithm 1).

Irregular memory accesses On an Intel Broadwell server
present in production data centers, this results in a high
LLC cache miss rate. For instance, Figure 5(right) shows
that a typical SparseLengthsSum operator in production-scale
recommendation models has an LLC cache miss rate of 8 MPKI
[25], compared to 0.5 MPKI, 0.2 MPKI, and 0.06 MPKI in an
RNN, FC, and CNN layers. Previous work [25] demonstrates
that embedding table lookups exhibit low reuse; high miss-rates
are a result of compulsory misses not capacity misses. The
observed cache miss rates can be exacerbated by additional
interference from OS-related activities, processor-dependent
TLB miss handling, as well as prefetching pollution [24], [56],
[57]. Furthermore, the element-wise sum is a low-compute
intensity operation. Due to their highly irregular memory access
pattern and low-compute density, efficient embedding table
operations requires unique solutions, compared to approaches
applied to FC and CNN layers.

III. AT-SCALE PERSONALIZATION

This section describes model architectures for three classes
of production-scale recommendation models: RMC1, RMC2,
and RMC3. This paper focuses on these three classes of
recommendation models for two reasons. First, the models
span different configurations in terms of the number and size
of embedding tables, number of sparse IDs per embedding
table, and size of FC layers. These configurations determine
compute density, storage requirements, and memory access
patterns, which may lead to different system and micro-
architecture optimizations. Second, the models consume the
65% of inference cycles in Facebook’s data centers (Figure 1).

A. Production Recommendation Pipeline

As shown in Figure 6, personalized recommendation is
accomplished by hierarchically ranking content. Lets consider
the example of recommending social media posts. When the



Model Description FC Embedding Tables
Bottom Top Number Input Dim. Output Dim. Lookups

RMC1
Small FC Layer1: 8× Layer1: 4×

1× to 3× 1× to 180× 1×
User: 4×

Few Emb. Tables Layer2: 4× Layer2: 2× Posts:Nx4×
Small Emb. Tables Layer3: 1× Layer3: 1×

RMC2
Small FC Layer1: 8× Layer1: 4×

8× to 12× 1× to 180× 1×
User:4×

Many Emb. Tables Layer2: 4× Layer2: 2× Posts:Nx4×
Small Emb. Tables Layer3: 1× Layer3: 1×

RMC3
Large FC Layer1: 80× Layer1: 4×

1× to 3× 10× to 180× 1× 1×Few Emb. Tables Layer2: 8× Layer2: 2×
Large Emb. Tables Layer3: 4× Layer3: 1×

TABLE I: Model architecture parameters representative of production scale recommendation workloads for three
example recommendation models used, highlighting their diversity in terms of embedding table and FC sizes. Each
parameter (column) is normalized to the smallest instance across all three configurations. Bottom and Top FC sizes are
normalized to layer 3 in RMC1. Number, input dimension, and output dimension of embedding tables are normalized
to RMC1. Number of lookups are normalized to RMC3.

user interacts with the web-based social media platform, a
request is made for relevant posts. At any given time there
may be thousands of relevant posts. Based on user preferences,
the platform must recommend the top tens of posts. This is
accomplished in two steps, filtering and ranking [16].

First, the set of possible posts, thousands, is filtered down by
orders of magnitude. This is accomplished using lightweight
machine learning techniques such as logistic regression. Com-
pared to using heavier DNN-based solutions, using lightweight
techniques trades off higher accuracy for lower run-time.
DNN-based recommendation models are used in the filtering
step when higher accuracy is needed. One such example is
recommendation model 1 (RMC1).

Next, the subset of posts is ranked and the top tens of posts
are shown to the user. This is accomplished using DNN-based
recommendation models. Compared to recommendation models
used for filtering content, models for finer grained ranking
are typically larger in terms of FC and embedding tables.
For instance, in the case of ranking social media posts, the
heavyweight recommendation model (i.e., RMC3) is comprised
of larger Bottom-FC layers. This is a result of the service
using more dense features. The other class of heavyweight
recommendation models (i.e., RMC2) is comprised of more
embedding tables as it processes contents with more sparse
features.

SLA requirements: In both steps, lightweight filtering
and heavyweight ranking, many posts must be considered
per user query. Each query must be processed within strict
latency constraints set by service level agreements (SLA). For
personalized recommendation, missing latency targets results in
jobs being preemptively terminated, degrading recommendation
result quality. The SLA requirements can vary from tens to
hundreds of milliseconds [16], [38], [48]. Thus, when analyzing
and optimizing recommendation systems in production data
centers, it is important to consider not only single model
latency but also throughput metrics under SLA. In the data
center, balancing throughput with strict latency requirements is
accomplished by batching queries and co-locating inferences
on the same machine (Section V and Section VI).

B. Diversity of Recommendation Models

Table I shows representative parameters for three classes of
recommendation models: RMC1, RMC2, and RMC3. While all
three types of models follow the general architecture (Figure 3),
they are quite diverse in terms of number and size of embedding
tables, embedding table lookups, and depth/width of FC layers.
To highlight these differences we normalize each feature to the
smallest instance across all models. Bottom and Top FC sizes
are normalized to layer 3 in RMC1. Number, input, and output
dimensions of embedding tables are normalized to RMC1.
The number of lookups (sparse IDs) per embedding table are
normalized to RMC3. RMC1 is smaller in terms of FCs and
embedding tables, RMC2 has many embedding tables (memory
intensive), and RMC3 has larger FCs (compute intensive). Note
that the number of FC parameters in the Top-FC layer depends
on not only the layer dimensions, but also the input size which
scales with the number of embedding tables (Figure 3) and
potentially large.

The number and size of embedding tables across the
three classes of recommendation models. For instance, RMC2
can have up to an order of magnitude more embedding tables
compared to RMC1 and RMC3. This is because RMC1 is a
lightweight recommendation model used in the initial filtering
step and RMC3 is used in applications with fewer sparse
features. Furthermore, while the output dimension of embed-
ding tables is the same across the recommendation models
(between 24-40), RMC3 has the largest embedding tables in
terms of the input dimensions. In aggregate, assuming 32-bit
floating point datatypes, the storage capacity of embedding
tables varies between 100MB, 10GB, and 1GB for RMC1,
RMC2, and RMC3. Thus, systems that run any of the three
at-scale recommendation model types, require large, off-chip
memory systems.

Embedding table lookups Embedding tables in RMC1 and
RMC2 have more lookups (i.e., more sparse IDs) per input
compared to RMC3. This is a result of RMC1 and RMC2
being used in services with many sparse features while RM3
is used in recommending social media posts, which has fewer
sparse features. Thus, RMC1 and RMC2 models perform more
irregular memory accesses leading to higher cache miss rates



Machines Haswell Broadwell Skylake
Frequency 2.5GHz 2.4GHz 2.0GHz

Cores per socket 12 14 20
Sockets 2 2 2
SIMD AVX-2 AVX-2 AVX-512

L1 Cache Size 32 KB 32 KB 32 KB
L2 Cache Size 256 KB 256 KB 1MB
L3 Cache Size 30 MB 35 MB 27.5MB
L2/L3 Inclusive Inclusive Inclusive Exclusiveor Exclusive
DRAM Capacity 256 GB 256 GB 256GB

DDR Type DDR3 DDR4 DDR4
DDR Frequency 1600MHz 2400MHz 2666MHz
DDR Bandwidth 51 GB/s 77 GB/s 85 GB/sper socket

TABLE II: Description of machines present in data centers
and used to run recommendation models

on off-the-shelf Intel server architectures found in the data
center.

MLP layers Bottom-FC layers for RMC3 are generally
much wider than those of RMC1 and RMC2. This is a result
of using more dense features in ranking social media posts
(RMC3) compared to services powered by RMC1 and RMC2.
Thus, RMC3 is a more compute intensive model than RMC1
and RMC2. Finally, it is important to note that width of FC
layers is not necessarily a power of 2, or cache-line aligned.

IV. EXPERIMENTAL SETUP

Server Architectures: Generally, data centers are composed
of a heterogeneous set of server architectures with differences in
compute and storage capabilities. Services are mapped to racks
of servers to match their compute and storage requirements.
For instance, ML inference in data centers is run on large
dual-socket server-class Intel Haswell, Broadwell, or Skylake
CPUs [32]. These servers include large capacity DRAMs and
support wide-SIMD instructions that are used for running
memory and compute intensive ML inference jobs.

Table II describes the key architecture features of the Intel
CPU server systems considered in this paper. Compared to
Skylake, Haswell and Broadwell servers have higher operating
frequencies. For consistency, turbo boost is disabled for all
experiments in this paper. On the other hand, the Skylake
architecture has support for AVX-512 instructions, more
parallel cores, and larger L2 caches. Furthermore, Haswell
and Broadwell implement an inclusive L2/L3 cache hierarchy,
while Skylake implements a non-inclusive/exclusive cache-
hierarchy [36], [37]. (For the remainder of this paper we
will refer to Skylake’s L2/L3 cache hierarchy as exclusive).
Sections V and VI describe the tradeoff between the system
and micro-architecture designs, and their impact on inference
latency and throughput in the data center.

Synthetic recommendation models: To study the perfor-
mance characteristics of recommendation models, we consider
a representative implementation of the three model types
RMC1, RMC2 and RMC3 shown in Table I. We analyze
inference performance using a benchmark [47] which accurately
represents the execution flow of production-scale models

Batch Size = 1

RMC1 RMC2 RMC3 RMC1 RMC2 RMC3

Fig. 7: (Left) Inference latency of three at-scale recom-
mendation models (RMC1, RMC2, RMC3) on an Intel
Broadwell server, unit batch size, varies by an order of
magnitude. (Right) Breakdown of time spent, unit batch
size, in each operator also varies significantly across the
three models.

(Section VII). The benchmark is implemented in Caffe2 with
Intel MKL as a backend library. All experiments are run with
a single Caffe2 worker and Intel MKL thread.

Inputs and models must be processed in parallel to maximize
throughput (i.e., number of posts) processed under strict SLA
requirements. This is accomplished by using non-unit batch-
sizes and co-locating models on a single system (see Section
V and Section VI). All data and model parameters are stored
in fp32 format.

V. UNDERSTANDING INFERENCE
PERFORMANCE OF A SINGLE MODEL

In this section we analyze the performance of a single
production-scale recommendation model running on server
class Intel CPU systems.

Takeaway-message 1: Inference latency varies by 15×
across production-scale recommendation models.

Figure 7 (left) shows the inference latency of the three
classes of production-scale models, with unit batch-size, on
an Intel Broadwell server. RMC1 and RMC2 have a latency
of 0.04ms and 0.30ms, respectively. This is a consequence
of the size of the embedding tables which are an order of
magnitude larger in RMC2. Compared to RMC1 and RMC2,
however, RMC3 has a much higher latency of 0.60ms. This is
because RMC3 has significantly larger FC layers. Furthermore,
we find significant latency differences between small and large
implementations of each type of recommendation model. For
instance, a large RMC1 has a 2× longer inference latency as
compared to a small RMC1 model, due to more embedding
tables and larger FC layers (Table I).

Takeaway-message 2: While embedding tables set memory
requirements, no single operator determines the runtime
bottleneck across recommendation models.

Figure 7 (right) shows the breakdown of execution time
for the three classes of production-scale models running
on an Intel Broadwell server. The trends of operator level
breakdown across the three recommendation models hold for



different Intel server architectures (across Haswell, Broadwell,
Skylake). When running compute intensive recommendation
models, such as RMC3, over 96% of the time is spent
in either the BatchMatMul or FC operators. However, the
BatchMatMul and FC operators comprise only 61% of the
run-time for RMC1. The remainder of the time is consumed
by running SparseLengthsSum (20%), which corresponds to
embedding table operations in Caffe2, Concat (6.5%), and
element-wise activation functions. In contrast, for memory-
intensive production-scale recommendation models, like RMC2,
SparseLengthsSum consumes 80% of the execution time of
the model.

Thus, software and hardware acceleration of matrix multi-
plication operations alone (e.g., BatchMatMul and FC) will
provide limited benefits on end-to-end performance across
all three recommendation models. Solutions for optimizing
the performance of recommendation models must consider
efficient execution of non-compute intensive operations such
as embedding table lookups.

Takeaway-message 3: Running production-scale recom-
mendation models on Intel Broadwell optimizes single model
inference latency.

Figure 8 compares the inference latency of running the
recommendation models on Intel Haswell, Broadwell, and
Skylake servers. We vary the input batch-size from 16, 128,
to 256 for all three recommendation models RMC1(top),
RMC2(center), and RMC3(bottom). For a small batch size of
16, inference latency is optimized when the recommendation
models are run on the Broadwell architecture. For instance,
compared to the Haswell and Skylake architectures, Broadwell
sees 1.4× and 1.5× performance improvement for RMC1, 1.3×
and 1.4× performance improvement for RMC2, and 1.32×
and 1.65× performance improvement on RMC3.

At low batch sizes, Broadwell outperforms Skylake due a
higher clock frequency. As shown in Table II, Broadwell has
a 20% higher clock frequency compared to Skylake. While
Skylake has wider-SIMD support with AVX-512 instructions,
recommendation models with smaller batch sizes (e.g., less than
16) are memory bound and do not efficiently exploit the wider-
SIMD instruction. For instance, we can measure the SIMD
throughput by measuring the number of fp arith inst retired
(512b packed single) instructions using the Linux perf utility.
The SIMD throughput with a batch-size of 4 and 16 are 2.9×
(74% of theoretical) and 14.5× (91% of theoretical) higher,
respectively, as compared that with unit batch-size. As a result,
for small batch-sizes Broadwell outperforms Skylake, due to
its higher clock frequency and the inefficient use of AVX-512
in Skylake.

Broadwell machines outperform Haswell machines due to
a higher DRAM frequency. Haswell’s longer execution time
is caused by its slower execution of the SparseLengthsSum
operator. Recall that the SparseLengthSum operator is memory
intensive. For instance, the LLC miss rate of the SparseLength-
sSum operator itself is between 1-10 MPKI (see Figure 5)
which corresponds to a DRAM bandwidth utilization of ∼
1GB/s. As a result, the performance difference between Broad-

Low Latency Recommendation 

Low Latency
 Recommendation 

RMC1

RMC2

RMC3

Fig. 8: Inference latency of RMC1 (Top), RMC2 (Center),
and RMC3 (Bottom) with batch sizes of 16, 128, and 256.
While Broadwell is optimal at low batch-sizes, Skylake
has higher performance with larger batch-sizes. This is a
result of Skylake’s wider-SIMD (AVX-512) support. The
horizontal line threshold indicates SLA requirements in
low-latency recommendation systems (e.g., search [16], [38]
).

well and Haswell for the SparseLengthsSum operator comes
from differences in DRAM frequency/throughput. Haswell
includes a slower DRAM (DDR3 at 1600MHz) as compared
to Broadwell (DDR4 at 2400MHz).

Takeaway-message 4: While the Skylake has wider-SIMD
support, which should provide performance benefits on batched
and compute-intensive inference, its throughput is sub-optimal
due to irregular memory access patterns from embedding table
lookups.

Recall that in production data centers, recommendation
queries for many users and posts must be ranked simultaneously.
One solution to improving overall system throughput is
batching. As shown in Figure 8, Skylake exhibits lower run-
time with higher batch-sizes. As a result, for use cases with
strict latency constraints (i.e., around 10ms for search [16],
[38]), Skylake can process recommendation with higher batch-
sizes.

This is consequence of the Skylake architecture’s ability to
accelerate FC layers using wider-SIMD support with AVX-
512 instructions. However, exploiting the benefits of AVX-512
requires much higher batch-sizes, at least 128, for memory
intensive production-scale recommendation models, such as
RMC1 and RMC2. For compute-intensive models, like RMC3,
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Fig. 9: Impact of co-locating production-scale recommen-
dation models on Broadwell. Increasing the number of
co-located models degrades per-model latency. RMC2
latency is the most affected by co-location as in FC and
SparseLengthsSum run-time degrade by 1.6× and 3×.

Skylake outperforms both Haswell and Broadwell starting at a
batch-size of 64. These benefits are sub-optimal given Skylake
(AVX-512) has a 2× and 4× wider SIMD width compared to
Broadwell (AVX-2) and Haswell (AVX-2), respectively. For
instance, Skylake runs the memory-intensive RMC1 model
1.3× faster than Broadwell. This is due to the irregular memory
access patterns from the embedding table lookups. In fact, the
SparseLengthsSum operator becomes the run-time bottleneck
in RMC1 with sufficiently high batch-sizes.

Takeaway-message 5: Designers must consider a unique set
of performance and resource requirements when accelerating
DNN-based recommendation models.

First, solutions must balance low-latency, for use cases with
stricter SLA (e.g., search [16], [38]), and high-throughout
for web-scale services. Thus, even for inference, hardware
solutions must consider batching. This can affect whether
performance bottlenecks come from the memory-intensive
embedding-table lookups or compute intensive FC layers. Next,
optimizing end-to-end model performance of recommendation
workloads requires full-stack optimization given the diverse
memory capacity, compute intensity, and memory access pattern
characteristics seen in representative implements (e.g., RMC1,
RMC2, RMC3). For instance, a combination of aggressive
compression and novel memory technologies [25] are needed
to reduce the memory capacity requirements. Existing solutions
of standalone FC accelerators [14], [15], [29], [38], [49], [61]
will provide limited performance, area, and energy benefits
to recommendation models. Finally, accelerator architectures
must balance flexibility with efficient resource utilization, in
terms of memory capacity, bandwidth, and FLOPs, to support
the diverse set data center use cases.

VI. UNDERSTANDING EFFECTS OF
CO-LOCATING MODELS

In addition to batching multiple items into a single inference,
multiple RM inferences are simultaneously run on the same

server in order to service billions of requests world-wide. This
translates to higher resource utilization. Co-locating multiple
production-scale recommendation models on a single machine
can however significantly degrade inference serving latency,
trading off single model latency with server throughput.

We analyze the impact of co-location on per-model latency as
well as overall throughput due to co-location. We find that the
effects of co-location on latency and throughput depend on not
only the type of production-scale recommendation model but
also the underlying server architecture. For instance, processor
architectures with inclusive L2/L3 cache hierarchies (i.e.,
Haswell, Broadwell) are particularly susceptible to performance
degradation and increased performance variability, compared
to processors with exclusive L2/L3 cache hierarchies (i.e.,
Skylake). This exposes opportunities for request scheduling
optimization in the data center [12], [43].

Takeaway-message 6 Per-model latency degrades due to
co-locating many production-scale recommendation models on
a single machine. In particular, RMC2’s latency degrades more
than RMC1 and RMC3 due to a higher degree of irregular
memory accesses.

Figure 9 shows the model latency degradation as we co-
locate multiple instances of the RMC1, RMC2, and RMC3 on a
single machine with a batch-size of 32. To highlight the relative
degradation, latency is normalized to that of running a single
instance (N=1) of each recommendation model. Compared
to RMC1 and RMC3, we find that RMC2 suffers higher
latency degradation. For instance, co-locating 8 production-
scale models, degrades latency by 1.3, 2.6, 1.6× for RMC1,
RMC2, and RMC3 respectively. At the data center scale, this
introduces opportunities for optimizing the number of co-
located models per machine in order to balance inference
latency with overall throughput — number of items ranked
under a strict latency constraint given by the SLA requirements.

Figure 9 also shows that latency degradation from co-location
is caused by lower FC and SparseLengthsSum performance.
As seen in RMC1 and RMC2, the fraction time spent running
SparseLengthsSum increases with higher degrees of co-location.
RMC3 remains dominated by FC layers. For instance, for
RMC2, co-location increases time spent on FC and Sparse-
LengthsSum increases by 1.6× and 3×, respectively. While
the time spent on remaining operators, accumulated as ”Rest”,
also increases by a factor of 1.6×, the impact on the overall
run-time is marginal. Similarly, for RMC1 the fraction of time
spent running SparseLengthsSum increases from 15% to 35%
when running 1 job to 8 jobs.

The greater impact of co-location on SparseLengthsSum is
due to the higher degree of irregular memory accesses which,
compared to FC, exhibits less cache reuse. For instance, by
increasing the number of RMC2 co-located models from 1 to
8, the per. model LLC-MPKI miss rate increases from 0.06
to 0.8. Thus, while co-location improves overall throughput
of high-end server architecture, it can impact performance
bottlenecks when running production-scale recommendation
model leading to lower resource utilization.

Takeaway-message 7 Processor architectures with inclusive



RMC2

Latency 
optimal

4 co-located 
models

Increasing 
co-location

Fig. 10: Latency/throughput tradeoff with varying number
of co-located RMC2 models. Starting from no co-location,
latency quickly degrades before plateauing. Broadwell
performs best under low co-location (latency). Skylake
is optimal under high co-location (throughput). Skylake’s
degradation around 18 co-located jobs is due to a sudden
increase in LLC miss rate.

L2/L3 cache hierarchies (i.e., Haswell, Broadwell) are more
susceptible to per-model latency degradation as compared to
ones with exclusive cache hierarchies (i.e., Skylake) due to
a high degree of irregular memory accesses in production
recommendation models.

Figure 10 shows the impact of co-locating a production-
scale recommendation model on both latency and throughput
across the Intel Haswell, Broadwell, and Skylake architectures.
While the results shown are for RMC2, the takeaways hold
for RMC1 and RMC3 as well. Throughput is measured by
the number of inferences per second and bounded by a strict
latency constraint, set by the SLA requirement, of 450ms.

No co-location: Recall that in the case of running a single
inference per machine, differences in model latency across
servers is determined by operating frequency, support for wide-
SIMD instructions, and DRAM frequency (see Section V for
details). Similarly, with few co-located inference (i.e., N = 2),
Broadwell has a 10% higher throughput and lower latency
compared to Skylake.

Co-locating models: Increasing the co-location degree,
Skylake outperforms both Haswell and Broadwell in terms
of latency and throughput. Co-locating inferences on a single
machine stresses the shared memory system causing latency
degradation. This is particularly true for co-locating production-
scale recommendation models that exhibit a high degree of
irregular memory accesses. In contrast, traditional DNNs
exhibit higher L1/L2 cache reuse. Under strict latency bounds
(e.g., 3ms), Skylake provides the highest throughput by
accommodating multiple, co-located recommendation models
on a single machine.

Skylake’s higher performance with high co-location is a
result of implementing an exclusive L2/L3 cache hierarchy as
opposed to an inclusive one. Inclusive caches suffer from a
higher L2 cache miss-rate, due to the irregular memory access
patterns in recommendation models. For instance, Broadwell’s
L2 miss rate increases by 29% when running 16 co-located

inferences (22 MPKI) compared to a single inference. Skylake
has not only a lower L2 miss rate (13 MPKI for single
inference), but also a smaller L2 miss rate increase (10%). This
is not only caused by a smaller L2 cache size in Broadwell,
but also a higher degree of cache back-invalidation due to an
inclusive L2/L3 cache hierarchy. For instance, Broadwell sees a
21% increase in L2 read-for-ownership miss rate, compared to
only 9% on Skylake. Finally, with a high number of co-located
inferences (over 18), Skylake suffers from a sudden latency
drop caused by a 6% increase in LLC miss rate.

Simultaneous multithreading/hyperthreading Prior work
has shown that simultaneous multithreading/hyperthreading in
modern processors generally improves system throughput [51],
[52]. However, multithreading/hyperthreading degrades p99
latency for recommendation models, especially compute-
intensive ones (i.e., RMC3). Results in Figure 10 are without
hyperthreading — one model per physical core. Enabling
hyperthreading causes FC and SparseLengthsSum run-times
to degrade by 1.6× and 1.3×, respectively. The FC operator
suffers more performance degradation as it exploits hardware
for wide-SIMD instructions (i.e., AVX-2, AVX-512) that are
time-shared across threads on the physical core. As a result,
latency degradation due to hyperthreading is more pronounced
in compute-intensive recommendation models (i.e., RMC3).

A. Recommendation Inference in Production

The experiments thus far study average latency and through-
put across production-scale recommendation models, system
architectures, and run-time configurations (e.g., batch-size,
number of co-located models). However, data center execution
must also consider tail performance [23], [40]. Here, we
study the impact of co-location on average and tail latency
of individual operators. Production-scale data shows that
Broadwell sees a larger performance degradation due to co-
location compared to Skylake.

Furthermore, inference for recommendation models running
in the data center suffer from high performance variability.
While we do not see performance variability in stand-alone
recommendation models (Section V and Section VI), we
find pronounced performance variability for recommendation-
models co-located in the production environment. In fact, p99
latency degrades faster, as the number of co-located inferences
increases, on Broadwell machines (inclusive L2/L3 caches) as
compared to Skylake. This exposes opportunities for optimizing
data center level scheduling decisions to trade off latency and
throughput, with performance variability.

Takeaway-message 8 While co-locating production scale
recommendation models with irregular memory accesses
increases the overall throughput, it introduces significant
performance variability.

As an example of performance variability in recommendation
systems in production environments, Figure 11a shows the
distribution of a single FC (input and output dim of 512)
operator found in all three types of recommendation models
(i.e., RMC1, RMC2, and RMC3). The production environment
has a number of differences compared to co-locating inferences
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Fig. 11: (a) Performance distribution of FC operator that fits in Skylake L2 cache and Broadwell LLC. The three
highlighted modes correspond to Broadwell with low, medium, and high co-location. (b) Mean latency of the same
FC operator (solid line) increases with more co-location. Gap between p5 and p99 latency (shaded region) increases
drastically on Broadwell with high co-location and more gradually on Skylake. (c) Larger FC operator highlights
the difference in Broadwell’s drastic p99 latency degradation compared to Skylake’s gradual degradation. Differences
between Broadwell and Skylake under high co-location are due to L2/L3 cache sizes and inclusive/exclusive hierarchies.

using the synthetic model implementation, including a job
scheduler that implements a thread pool with separate queuing
model. Despite fixed input and output dimensions, performance
varies significantly across Broadwell and Skylake architectures.
In particular, Skylake sees a single mode (45µs) whereas,
Broadwell follows a multi-modal distribution (40µs, 58µs, and
75µs) — a result of co-locating inferences.

Figure 11b shows the impact on latency for the same
FC operator under varying degrees of co-located inferences
on Broadwell and Skylake in the production data-center
environment. All inferences co-locate the FC operator with
RMC1 inferences. Inferences are first co-located to separate
physical cores (i.e., 24 for Broadwell, 40 for Skylake) and
exploit then hyper-threading. The solid lines illustrate the
average operator latency on Broadwell (red) and Skylake (blue),
while the shaded regions represent the p5 (bottom) and p99
(top) latencies.

Three key observations are made here. First, average latency
increases with more co-location. On Broadwell the average
latency of the FC operator can be categorized into three regions:
40µs (no co-location), 60µs (5-15 co-located jobs), and 100µs
(over 20 co-located jobs). This roughly corresponds to the
modes seen in Figure 11a. Second, the p99 latency increases
significantly with high co-location (over 20 jobs) on Broadwell.
Thus, increasing average throughput with co-location sacrifices
predictably meeting SLA requirements. Third, the average and
p99 latency increases more gradually on Skylake. This is a
result of an exclusive L2/L3 cache-hierarchy in Skylake — the
impact of co-locating recommendation models with irregular
memory accesses is less on the shared memory system.

Figure 11c runs the same experiments for a much larger
FC operator to highlight the key observations: (1) three
regions (no-location, 10-15 co-located jobs, more than 20
co-located jobs) of operator latency on Broadwell, (2) large
increase in p99 latency under high co-location, and (3) gradual
latency degradation on Skylake. Broadwell suffers from higher
performance variability as compared to Skylake. This exposes

opportunities for scheduling optimizations to balance latency,
throughput, and performance variability.

VII. OPEN-SOURCE BENCHMARK

Publicly available DNN based recommendation benchmarks,
i.e., neural-collaborative filtering (MLPerf-NCF [5], [34]),
are not representative of the ones used in the data center.
For instance, compared to production-scale recommendation
workloads, the NCF workload from MLPerf [5] has orders of
magnitude smaller embedding tables and fewer FC parameters
(Figure 12). Consequently, FC comprises over 90% of the
execution time in NCF, in contrast SparseLengthSum comprises
around 80% of the cycles in RMC1 (with batching) and
RMC2. This section describes an open-source benchmark that
represents data center scale implementations of Facebook’s
DNN-based recommendation models [47]. The goal is to close
the gap between currently available and realistic production-
scale benchmarks.

A. Configuring the open-source benchmark

The open-source benchmark [46], [47] was designed with the
flexibility to not only study the production scale models seen
in this paper (i.e., RMC1, RMC2, RMC3), but also a wider set
of realistic recommendation models (e.g., personalized ranking
of video content [22]). To facilitate ease of use and maximize
flexibility, the open-source benchmark provides a suite of
tunable parameters to define an end-to-end recommendation
system, as shown in Figure 13. The set of configurable
parameters include: (1) the number of embedding tables,
(2) input and output dimensions of embedding tables, (3)
number of sparse lookups per embedding table, (4) depth/width
of MLP layers for dense features (Bottom-MLP), and (5)
depth/width of MLP layers after combining dense and sparse
features (Top-MLP). These parameters can be configured to
implement recommendation models dominated by dense feature
processing (i.e., RMC1, RMC3) and sparse feature processing



Fig. 12: At-scale recommendation models (RMC1, RMC2,
RMC3) have orders of magnitude longer inference latency,
larger embedding tables, and FC layers compared to
MLPerf-NCF. All parameters are normalized to MLPerf-
NCF.

(i.e., RMC1, RMC2). Table III summarizes the key micro-
architectural performance bottlenecks for the different classes
of recommendation models studied in this paper.

Example configurations: As an example, let’s consider an
RMC1 model (Table I). In this model the number of embedding
tables can be set to 5, with input and output dimensions of
105 and 32, the number of sparse lookups to 80, depth and
width of BottomFC layers to 3 and 128-64-32, and the depth
and width of TopFC layers to 3 and 128-32-1.

Using the open-source benchmark The open-source
DLRM benchmark is used to study recommendation models
in this paper. By varying the batch, FC, and embedding
table configurations, it can also be used to study other
recommendation models. More generally, it can been used to
analyze scheduling decisions, such as running recommendation
models across many nodes (distributed inference) or threads.

Finally, the open-source benchmark can be used to design
memory systems, intelligent pre-fetching/caching techniques,
and emerging memory technologies. For instance, while
the memory access patterns of recommendation models are
irregular compared to well-studied CNNs, the memory accesses
are highly dependent on inputs and not completely random.
Figure 14 illustrates the fraction of unique sparse IDs used
to index embedding tables over a variety of production
recommendation use cases. Intuitively, the degree of unique
IDs varies based on user behavior (inputs). Use cases with
fewer unique IDs enable opportunities for embedding vector
re-use and intelligent caching. To study the implications of
this locality on memory systems, the recommendation model
implementation can be instrumented with open-source data
sets [3], [6] as well as a provided load generator [47].

VIII. RELATED WORK

While the systems and computer architecture community
has devoted significant efforts to performance analysis and
optimization for DNNs, relatively little focus has been devoted
to personalized recommendation systems. This section first
reviews DNN-based solutions for personalized recommendation.
This is followed by a discussion on state-of-the-art performance
analysis and optimizations for DNNs with context on how the
proposed techniques relate to recommendation systems.
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Fig. 13: Overall architecture of the open-source recom-
mendation model system. All configurable parameters are
outlined in blue.

DNN-based personalized recommendation Compared to
image-classification [33], object detection [50], and speech
recognition [10], [11], [31] which process dense features,
inputs to personalized recommendation are a mix of both
dense and sparse features. NCF [34] uses a combination of
embedding table, FC layers, and ReLU non-linearities using
the open-source MovieLens-20m dataset [6]. Dense and sparse
features are combined using a series of matrix-factorization
and FC layers. In [22], the authors discuss applying this model
architecture to Youtube video recommendation. A similar model
architecture is applied to predict click-through-rates [54]. More
generally, [16] explores the the accuracy tradeoff of wide (few
FC layers and embedding tables) and deep (many FC layers and
embedding tables) for serving recommendation in the Google
Play Store mobile application. The authors find that accuracy
is optimized using a combination of wide and deep neural
networks, similar to the production-scale recommendation
models considered in this paper. While on-going research
explores using CNNs and RNNs in recommendation systems
[59], for the purposes of this paper we focus on production-
scale recommendation models (Figure 3).

DNN performance analysis and optimization Current
publicly available benchmarks [4], [9], [20], [62] for DNNs
focus on models with FC, CNN, and RNN layers only. In
combination with open-source implementations of state-of-
the-art networks in high-level deep learning frameworks [2],
[7], [8], the benchmarks have enabled thorough performance
analysis and optimization. However, the resulting software and
hardware solutions [14], [15], [29], [38], [49], [61] do not
apply to production-scale recommendation workloads.

Recommendation workloads pose unique challenges in terms
of memory capacity, irregular memory accesses, diversity
in compute intensive and memory intensive models, and
high-throughput and low-latency optimization targets. Fur-
thermore, available implementations of DNN-based recom-
mendation systems (i.e, MLPerf NCF [5]) are not representa-



Dense features Sparse features
Model(s) RMC1 & RMC3 RMC1 & RMC2
Operators MLP dominated Embedding dominated

µarch bottleneck

Core frequency Core frequency
Core count Core count

DRAM capacity DRAM capacity
SIMD performance DRAM freq. & BW

Cache size Cache contention

TABLE III: Summary of recommendation models and key
micro-architectural features that impact at-scale perfor-
mance.

tive of production-scale ones. To alleviate memory capacity
and bandwidth constraints, Eisenman et al. propose storing
recommendation-models in non-volatile-memories with DRAM
to cache embedding-table queries [25]. Recent work has
also proposed solutions based on near-memory processing to
accelerate embedding table operations [41], [42]. The detailed
performance analysis in this paper will enable future work
to consider a broader set of solutions to optimize end-to-end
personalized recommendation systems currently running in data
centers and motivate additional optimization techniques that
address challenges specifically for mobile [55].

IX. CONCLUSION

This paper provides a detailed performance analysis of
recommendation models on server-scale systems present in
the data center. The analysis demonstrates that DNNs for
recommendation pose unique challenges to efficient execution
as compared to traditional CNNs and RNNs. In particular,
recommendation systems require much larger storage capacity,
produce irregular memory accesses, and consist of a diverse
set of operator-level performance bottlenecks. The analysis
also shows that based on the performance target (i.e., latency
versus throughput) and the recommendation model being
run, the optimal platform and run-time configuration varies.
Furthermore, micro-architectural platform features, such as pro-
cessor frequency and core count, SIMD width and utilization,
cache capacity, inclusive versus exclusive cache hierarchies,
and DRAM configurations, expose scheduling optimization
opportunities for running recommendation model inference in
the data center.

For the servers considered in this paper, Broadwell achieves
up to 40% lower latency while Skylake achieves 30% higher
throughput. This paper also studies the effect of co-locating
inference jobs, as mechanisms to improve resource utilization,
on performance variability. The detailed performance analysis
of production-scale recommendation models lay the foundation
for future full-stack hardware solutions targeting personalized
recommendation.
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Fig. 14: Percent of unique sparse IDs (e.g., embedding
table lookups) varies across recommendation use cases and
production traces. This enables opportunities for intelligent
cache and prefetching optimizations. The open-source
implementation provides embedding trace generators in
order to instrument recommendation models to study
memory system optimizations.
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