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1. Introduction
Extreme-scale integration of modern system-on-chip
(SoC) and escalating design complexity of emerg-
ing applications reiterate the importance of designing
at a higher level of abstraction and call for an ever-
improving suite of high-level synthesis (HLS) tools to
enable optimization opportunities that are otherwise in-
feasible at the register-transfer level (RTL) [1]. The need
for software programmability is especially pertinent to
FPGAs as they emerge from logic devices to comput-
ing devices by combining a number of hardened blocks
with the programmable fabric [4]. While leveraging the
productivity and performance benefits of this new de-
sign automation paradigm relies on a line of novel HLS
algorithms to exploit the reconfigurability, massive fine-
grained parallelism, and performance per watt advan-
tage of FPGAs, there lacks a set of benchmarks to pro-
vide a practical evaluation of the quality of results (QoR)
generated by these algorithms.

We present Rosetta: a suite of software applications
from a range of domains with hardware constraints tar-
geting heterogeneous FPGAs. Unlike previous efforts,
Rosetta provides breath by allowing benchmarking of
parametrizable applications beyond the kernel level and
incorporates applications from emerging domains. The
initial set of applications are implemented in C/C++
and OpenCL to accommodate both the sequential and
parallel programming models commonly supported by
HLS. Rosetta also emphasizes depth by specifying real-
istic design constraints for each application. Our multi-
dimensional approach aims to merge research and de-
velopment among emerging HLS algorithms, software
applications, and heterogeneous reconfigurable acceler-
ators.

2. Benchmark Suite
HLS benchmarking poses several unique challenges.
Unlike software design where performance is tradi-
tionally the first-order objective, hardware design must
explore the complex trade-off among metrics such as
performance, area, and timing. As such, an HLS bench-
mark must predictably reflect the influence of hardware-
specific optimizations and constraints and outline the

resulting QoR at both the kernel and application levels.
Given the evolving nature of HLS, it is also necessary
to support and provide a fair comparison between dif-
ferent programming models. Motivated by the observa-
tion that existing HLS benchmarks such as CHStone [3]
and MachSuite [5] fall short in addressing these chal-
lenges, Rosetta couples a range of realistic applications
with real-world constraints to benchmark HLS algo-
rithms with various hardware optimizations under dif-
ferent programming models.

2.1 Realistic Applications

Existing HLS benchmark suites provide a myriad of
small kernels prevalent in literature. For instance, CH-
Stone [3] has 12 kernels from only three main applica-
tion domains, and thus fails to characterize a diverse set
of workloads. MachSuite [5] surveys a wider range of
domains but falls short of integrating kernels into real-
istic applications commonly implemented in the field.
Both suites contain very few kernels with over 1000
lines of code and lack the complexity representative of
designs implemented with state-of-the-arts HLS tools in
academic and commercial environments. As seen in Ta-
ble 1, Rosetta is comprised of a set of applications se-
lected from domains where FPGAs have demonstrated
effectiveness as a computing platform and can achieve
orders of magnitude improvement in performance com-
pared to general-purpose CPUs or GPUs. Each applica-
tion has been used in large scale HLS-focused academic
studies or commercial solutions, and is composed of key
kernels found in existing benchmark suites.

2.2 Realistic Constraints

In addition to realistic applications, Rosetta includes
a set of enforceable realistic system-level design con-
straints based on each application’s real world specifica-
tions to model realistic use cases for FPGA-based hard-
ware accelerators. Unlike traditional software profiling
where execution time constitutes the key requirement,
FPGA-based hardware designs must be synthesized to
meet certain throughput, latency, clock frequency, and
area constraints. By enforcing strict system-level con-
straints, Rosetta allows a standardized approach to study
the effectiveness of various HLS optimizations in syn-
thesizing realistic design points. For instance, Rosetta



Prosposed Initial Benchmarks for Rosetta
Application Domain Constraints Kernels / Algorithms

Voice Removal and Pitch Shifting Audio Processing Latency (Real-Time) FFT, Inverse FFT, DSP Filters
DNA and Protein Sequencing Bioinformatics Throughput Smith Waterman

Advanced Encryption Standard Cryptography Throughput Matrix Subsitution and Permutations
Monte Carlo Option-Pricing Financial Analysis Throughput / Latency Black Scholes, Mersenne Twister, Box Muller

Digit Recognition Machine Learning Throughput Population-Count, K-NN, K-Means
Convolutional Neural Networks Machine Learning Throughput Convolution, Soft Max and Max Pool Layers

Face Detection Video Processing Throughput Viola Jones Algorithm
Lane Detection Video Processing Latency (Real-Time) Edge Detection

Table 1: Multi-dimensional benchmarks with realistic design constraints to be supported by Rosetta.

allows its users to evaluate the ability of an algorithm
in achieving a desired throughput and analyze the cor-
responding impact in area and latency. Furthermore,
Rosetta allows parametrization of designs to fine tune
functional behaviors and workload patterns, and pro-
vides an extensive software and hardware functional
verification infrastructure to ensure the correctness of
designs from pre-synthesis to post-place-and-route. The
verification framework includes high-level software im-
plementations of each design that produce golden out-
puts for given input datasets, and are used to validate
results during software and hardware simulations.

2.3 Exploring HLS Optimizations

Much of the source code from existing benchmark
suites is not HLS tool friendly in the sense that adding
hardware-specific directives requires tremendous user
overhead in terms of understanding and refactoring, pos-
sibly a large portion of, the code. For example, pipelin-
ing functions, unrolling loops, and enforcing latency
constraints are often deemed fruitless as the design is not
amenable to such optimizations without significant code
modification. On the contrary, Rosetta supports HLS op-
timizations directives by providing multiple implemen-
tations of each design. Starting from a baseline software
implementation, Rosetta guides the user in the process
of porting each application to popular commercial and
academic HLS tools and adding directives to implement
key hardware optimizations necessary to achieve a re-
alistic design. To enable a more productive design flow,
Rosetta aggregates synthesis results of various design
points, which allows the users to more efficiently com-
pare the QoR resulting from various optimizations.

2.4 Programming Models and Architectures

CHStone [3] and MachSuite [5] are both designed for
sequential C-based HLS flows. As a result, existing
benchmark suites are language-specific and not portable
to other programming models. As reconfigurable hard-
ware architectures become increasingly heterogeneous
and programming environments for hardware accelera-

tors become increasingly versatile, a single benchmark
that supports various programming models is needed.
In anticipation of this trend, Rosetta will support both
C/C++ and OpenCL - two prominent models that are
currently supported by academic and commercial HLS
tools. A different programming model introduces new
device and tool-specific issues that need to be consid-
ered by the synthesis algorithm. In the case of OpenCL
for FPGA, additional optimizations may be necessary
to hide communication latency and efficiently pipeline
kernels to achieve parallel execution of work items [2].
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