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ABSTRACT
Scheduling plays a central role in high-level synthesis, as it
inserts clock boundaries into the untimed behavioral model
and greatly impacts the performance, power, and area of the
synthesized circuits. While current scheduling techniques
can make use of pre-characterized delay values of individual
operations, it is difficult to obtain accurate timing estima-
tion on a cluster of operations without considering technol-
ogy mapping. This limitation is particularly pronounced for
FPGAs where a large logic network can be mapped to only
a few levels of look-up tables (LUT).

In this paper, we propose MAPS, a mapping-aware con-
strained scheduling algorithm for LUT-based FPGAs. In-
stead of simply summing up the estimated delay values of
individual operations, MAPS jointly performs technology
mapping and scheduling, creating the opportunity for more
aggressive operation chaining to minimize latency and re-
duce area. We show that MAPS can produce a latency-
optimal solution, while supporting a variety of design timing
requirements expressed in a system of difference constraints.
We also present an efficient incremental scheduling technique
for MAPS to effectively handle resource constraints. Exper-
imental results with real-life benchmarks demonstrate that
our proposed algorithm achieves very promising improve-
ments in performance and resource usage when compared
to a state-of-the-art commercial high-level synthesis tool tar-
geting Xilinx FPGAs.

1. INTRODUCTION
As modern-day field-programmable gate arrays (FPGAs)

integrate billions of transistors to meet the ever-increasing
design complexity, high-level synthesis (HLS) is becoming a
major player in improving design productivity and reducing
the overall verification effort for large-scale FPGA-based de-
signs [11]. HLS raises the level of design abstraction from
register-transfer-level (RTL) modeling to high-level software
programming by automatically transforming untimed be-
havioral descriptions into optimized cycle-accurate hardware

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FPGA’15, February 22–24, 2015, Monterey, California, USA.
Copyright c© ACM 978-1-4503-3315-3/15/02 ...$15.00.
http://dx.doi.org/10.1145/2684746.2689063.

^

z

&

y x

z

&

y xout=z^(x&(y^z))
z

&

y x

3-input LUT
(2ns)

2ns

2ns

2ns
^

^

^

^

^

out out out

cycle0

cycle1

cycle2

cycle0

cycle1

(a) MD5 kernel
(b) Conventional

schedule
(c) Mapping-aware

schedule

Figure 1: Reducing latency with mapping-aware scheduling
for an MD5 kernel – Target clock period is 5ns; each logic
operation or LUT incurs a 2ns delay. Symbols ∧ and &
represent XOR and AND operations, respectively.

implementations. One of the most important steps in HLS
is scheduling, which analyzes the parallelism in the input
behavioral model and intelligently assigns time steps to op-
erations based on the design constraints. As one would ex-
pect, scheduling dictates the clock frequency, latency, and
throughput of the synthesized design; it also largely influ-
ences the area and power of the final hardware circuit.

When determining the clock boundaries (or placement
of registers) given a target clock period, existing schedul-
ing techniques typically rely on delay estimates from the
pre-characterization of the RTL building blocks (e.g., logic
gates, adders, multiplexers, etc.). The timing analysis on a
cluster of operations is usually carried out by simply sum-
ming up the estimated delay values of the individual opera-
tions on the longest path. While such additive delay models
are not unreasonable for FPGA designs dominated by arith-
metic operations that use dedicated carry chains and DSP
blocks, the estimated delay is often too pessimistic for logic-
operation-intensive applications where a large logic network
can be mapped to only a few levels of look-up tables (LUTs).
Without considering the impact of technology mapping, the
overestimation of logic delays during scheduling will easily
result in suboptimal performance and resource usage for the
synthesized circuit.

Figure 1(a) illustrates the data-flow graph (DFG) of a sim-
ple kernel from the MD5 message-digest algorithm, a widely
used cryptographic hash function [27]. With a 5ns clock pe-
riod constraint, conventional scheduling algorithms would
simply compute the critical path delay of the DFG and in-
sert registers as shown in Figure 1(b) to meet the target clock
period constraint, assuming that each logic gate incurs a 2ns



delay. As a result, the synthesized design requires a latency
of two cycles and two LUTs. On the other hand, it is evident
from the DFG that all operations can be scheduled combi-
nationally and realized together with a single 3-input LUT,
as illustrated in Figure 1(c). The importance of account-
ing for technology mapping during operation scheduling is
obvious from this simple example. An accurate delay esti-
mation of a cluster (or subgraph) of operations should not
be a simple function that adds up operation delays on the
critical path, but should instead factor in the level of LUTs
needed to cover the subgraph. Otherwise, a suboptimal reg-
ister placement from HLS would unnecessarily increase the
latency of the synthesized design and in turn limit the scope
of optimizations in the downstream CAD toolflow, including
technology mapping.

In this paper, we propose MAPS, a MAPping-aware
constrained Scheduling algorithm for LUT-based FPGAs, to
address the inherent inaccuracy of delay estimation in HLS
due to the lack of information of LUT mapping. By employ-
ing a novel labeling approach that simultaneously produces
the time steps of operations as well as their depths in LUT
levels, MAPS generates a minimum-latency schedule in the
perspective of both the scheduler and technology mapper.
Our experiments with a collection of real-life benchmarks
demonstrate that MAPS can significantly improve the per-
formance and reduce the register and LUT usage compared
to a state-of-the-art commercial high-level synthesis tool tar-
geting Xilinx FPGAs. More specifically, our main contribu-
tions are as follows:

1. To our knowledge, we are the first to propose a truly
integrated scheduling and mapping algorithm in HLS
for FPGAs to fundamentally address and exploit the
interdependence between scheduling and LUT map-
ping for optimizing the performance and area of the
synthesized circuits.

2. We present a novel and scalable constrained scheduling
algorithm using relaxation-based labeling that is able
to achieve a latency-optimal schedule, while support-
ing a variety of design timing requirements expressed
in a system of difference constraints.

3. We also propose an efficient incremental scheduling al-
gorithm to optimize the schedule under resource con-
straints.

We emphasize that the proposed mapping-aware schedul-
ing algorithm goes beyond a simple extension of traditional
technology mapping techniques on a high-level dataflow
graph [8, 9]. Technology mapping requires a pre-determined
register placement, while scheduling determines such a reg-
ister placement. We consider technology mapping during
scheduling to address this interdependence between schedul-
ing and mapping and optimally place registers such that the
timing is met and the latency is minimized. In fact, our
approach is analogous to a generalization of retiming-based
technology mapping [23, 24]. However, unlike traditional
or retiming-based technology mapping techniques, our al-
gorithm starts with an untimed design and is able to han-
dle a rich set of scheduling constraints. In addition, tradi-
tional and retiming-based technology mapping are not able
to propagate registers into a cycle of a circuit, and do not
solve the mapping-aware scheduling problem.

The rest of the paper is organized as follows: Section 2 re-
views previous work on scheduling and mapping; Section 3
provides background on scheduling constraints and mapping
techniques; Section 4 presents the MAPS algorithm; Sec-
tion 5 reports experimental results, followed by additional
discussions in Section 6; We conclude the paper in Section 7.

2. RELATED WORK
A large number of scheduling algorithms have been pro-

posed to optimize for various design metrics related to per-
formance, area, and power. Constrained scheduling is in
general NP-hard and thus usually relies on heuristic algo-
rithms. Examples of classical scheduling heuristics include
force-directed scheduling [25] and list scheduling [1]. Re-
cently, the application of system of difference constraints
(SDC) [12, 15] has enabled an efficient and scalable linear
programming approach to the constrained scheduling prob-
lem that encapsulates a rich set of realistic scheduling mod-
els including chained operations, multi-cycle operations, fre-
quency constraints, and relative timing constraints in I/O
protocols. SDC can be extended to handle loop pipelin-
ing [30, 4], an important scheduling optimization in the pres-
ence of loop-carried dependence. We note that our MAPS
framework can also efficiently handle these SDC constraints.

In addition to optimizing HLS for classic design objec-
tives such as performance [28, 16] and area [30], there is
a growing trend in integrating upstream scheduling with
downstream physical implementation. For example, Cong
et al. [10] evaluate metrics for quantifying interconnect op-
timization opportunity during scheduling and envision a
scheduling approach that generates layout-friendly RTL ar-
chitecture. Most recently, Zheng et al. [31] propose an HLS
flow that performs scheduling and place-and-route itera-
tively. By back-annotating more realistic post-place-and-
route delay estimates after each iteration, the HLS tool is
able to compute an improved schedule for timing closure.
Obviously, an efficient back-annotation flow can also benefit
our MAPS approach by providing more accurate delay esti-
mates. In this work, we further address the limitation of the
additive delay model assumed by the existing HLS tools.

In relation to scheduling, mapping is a downstream step
in the design implementation flow and can affect the final
quality of results (QoR) even with an optimized schedule [6].
There has been an extensive amount of research on mapping
with optimization objectives ranging from LUT depth [8]
and area [14, 5] traditionally to reliability [13] and even se-
curity [3] more recently. Prominent mapping techniques in-
clude FlowMap [8], CutMap [9], and DaoMap [5].

Apart from integrating mapping with upstream logic syn-
thesis [7] and downstream placement [21], Pan et al. propose
a retiming-based technology mapping technique that consid-
ers mapping for register repositioning to achieve the mini-
mum clock period [23, 24]. While it is able to achieve the
optimal clock period, the retiming-based mapping approach
is limited to circuits with an initial register placement and
cannot perform actual scheduling on an untimed circuit. In
Section 6, we will show that MAPS is a generalization of the
retiming-based mapping.

3. PRELIMINARIES
Scheduling is the problem of assigning time steps to op-

erations from an untimed behavioral description to synthe-



size a cycle-accurate RTL model. Technology mapping (or
mapping for short) is the process of transforming a graph
of technology-independent logic elements into technology-
dependent logic cells, such as LUTs, DSP blocks, and mem-
ories, on the target FPGA device. In this paper, we focus on
the LUT mapping problem of logic operations. Operations
that are not mapped to LUTs (e.g., memory operations) are
referred to as black-box operations.

3.1 Scheduling Constraints
Constraints are an important ingredient of the scheduling

formulation. Commonly encountered constraints in HLS in-
clude dependence constraints which arise from data and con-
trol dependences in the control-data flow graph (CDFG),
latency and relative timing constraints which define the re-
quired maximum or minimum number of cycles between two
operations (e.g., user-specified I/O protocols), and the clock
period constraint which ensures that the critical path meets
the target clock period.

It has been shown that all of the aforementioned con-
straints can be precisely represented and efficiently solved
in the form of system of difference constraints, or SDC [15,
30]. Under the SDC formulation, dependence constraints
can be represented in the form of su − sv ≤ 0, where su
and sv denote the control steps of operations u and v. La-
tency and relative timing constraints are represented in the
form su − sv ≤ d, where d is the minimum schedule time
difference between u and v. SDC-based scheduling makes
use of the constraint graph during feasibility checking and
optimization. In the constraint graph, each edge u→ v with
a weight d represents an SDC constraint su − sv ≤ d. The
constraint graph can be easily constructed from the CDFG
by keeping the same set of nodes on CDFG and adding edges
for each SDC constraint [30].

It is important to note that although MAPS is designed
to conveniently handle various SDC constraints, it purposely
avoids clock period difference constraints. Such modeling of
the clock period constraints assumes additive delay among
chained operations as in conventional scheduling approaches
and is a reason for sub-optimal QoR.

3.2 Technology Mapping
Mapping is typically performed on a directed acyclic graph

(DAG) of logic gates, abstractly represented as nodes, for
the combinational paths between register boundaries. Let
Cv denote a cone rooted at node v, defined as the sub-graph
of v and some of its predecessors such that there exists a
path from any node in Cv to v that is entirely contained
within Cv. The cone Cv is K-feasible if there are no more
than K nodes outside Cv with edges pointing to nodes in
Cv. A cut of Cv, denoted as CUT (Cv), is defined to be the
set of input nodes of Cv. CUT (Cv) is K-feasible if Cv is
a K-feasible cone. In Figure 1(c), for example, the three
nodes form a 3-feasible cone rooted at the bottom node.

In LUT-based FPGAs, any K-feasible cones can be imple-
mented with a K-input LUT (or K-LUT), so the mapping
problem reduces to the problem of optimally covering the
input graph with K-feasible cones [8, 23]. Such mapping
framework generally consists of cut enumeration, cut rank-
ing, cut selection, and final mapping generation. Cut enu-
meration explores all K-feasible cuts rooted at each node,
while cut ranking evaluates these cuts based on the opti-
mization objective. Cut selection typically follows a reverse
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Figure 2: Overall design flow of MAPS.

topological order to select the most optimal cut for each
node based on the previous ranking information to generate
the final mapping solution. In Section 4.1, we will discuss
our customized cut enumeration algorithm for MAPS.

3.3 MAPS Problem Formulation
We formulate the mapping-aware scheduling problem as

an optimization problem formally stated as follows:
Given: (1) A CDFG G that captures data and control

dependence constraints; (2) A target clock period Tcp; (3) A
set of additional scheduling constraints C, including latency
and relative timing constraints expressed in the form of SDC,
and resource constraints; (4) A target FPGA device using
K-input LUTs.
Goal: Find a minimum-latency schedule for G so that no

constraints in C are violated, and within each cycle, there
exists a feasible K-LUT mapping that meets Tcp.

4. MAPS ALGORITHM
In this section we present MAPS, a mapping-aware con-

strained scheduling algorithm to address and exploit the
interdependence between scheduling and LUT mapping to
minimize the latency of the synthesized design. Figure 2
shows the overall flow for MAPS. MAPS takes the CDFG
along with a variety of scheduling constraints as inputs, and
generates a minimum-latency schedule. The algorithm con-
sists of three major steps: (1) Cut enumeration generates all
K-feasible cuts for each node in the CDFG using a work-list-
based approach; (2) Relaxation-based labeling computes for
each operation its minimum time step and minimum level (in
terms of LUT depth) allowed by the design constraints; (3)
Incremental scheduling legalizes the schedule for resource-
constrained operations to avoid resource conflicts based on
the results from labeling.

4.1 Cut Enumeration
MAPS generates all K-feasible cuts at each node as part of

the process for determining the minimum schedule latency.
Unlike traditional cut enumeration algorithms that typically
operate on an acyclic DAG with logic operations, MAPS
deals with both logic operations and black-box operations
that cannot be mapped to LUTs, such as multiplications and
memory reads/writes. In addition, MAPS needs to handle
cycles that arise from loop-carried dependences on CDFG.

Typically, the K-feasible cut set for each node v can be
computed based on its inputs on the CDFG. Suppose v’s
inputs are u1, u2, ..., up and their own cut set are CUTSu1 ,
CUTSu2 , ..., CUTSup , where CUTSui is a collection of cuts



and each cut c ∈ CUTSui is a K-feasible cut. The K-feasible
cut set for v can be computed as follows:

• If v is a black-box operation that does not map to
LUTs, the only legal cut for v is itself, which is a trivial
cut, i.e., CUTSv = {{v}}, as block boxes will never be
packed together with any other operation.

• If v is a logic operation, the K-feasible cuts for v can
be computed by merging the K-feasible cuts for all its
inputs as follows:

CUTSv = mergeCuts(u1, ..., up) =

{C′ = C1 ∪ ... ∪ Cp|Ci ∈ CUTSui , |C
′| < K}

(1)

Without considering cycles, we can easily compute the
cut set for each node by traversing the graph in topologi-
cal order using conventional cut enumeration approaches [9].
However, a simple topological traversal is not enough when
the graph contains cycles. To handle the cycles on CDFG,
our cut enumeration algorithm iteratively applies Equation
(1) to each node until convergence, when all K-feasible cuts
are obtained. More specifically, we maintain a work list for
nodes that need to be updated. Initially, the work list con-
tains all operations, and the cut set for each node is the
trivial cut. For each node in the work list, we apply Equa-
tion (1) to compute the new cut set. If a new cut is added
for a node, we update its cut set and add all its successors
to the work list. We remove a node from the work list each
time it is visited. The algorithm terminates when the work
list becomes empty. As suggested by previous studies [14],
cut enumeration is an exponential algorithm with respect to
K. Nevertheless, the actual runtime for cut enumeration is
typically fast for K ≤ 6.

Our cut enumeration algorithm can be applied on both
word-level or bit-level dependence graphs. By decomposing
the word-level CDFG into bit-level dependence graph [29],
we are able to capture the exact bit-level inputs for each
operation, but such graph decomposition would complicate
our scheduling and mapping. To make our algorithm more
scalable and efficient, we currently implement our cut enu-
meration algorithm on word-level CDFG. In this case, we
cannot simply compute the inputs of each node based on
word-level values, because each output bit may depend on
multiple input bits of a single word-level value. For example,
given an arithmetic operation C[1 : 0] = A[1 : 0] + B[1 : 0],
the highest output bit C1 depends on four input bits A1, A0,
B1, and B0, which come from only two word-level values A
and B on CDFG.

To handle such bit-level dependence, our cut enumera-
tion algorithm performs bit-level dependence analysis based
on CDFG for different types of operations: (a) For bitwise
logic operations such as AND, OR, and XOR, each bit is inde-
pendent of the other bits, so we can compute the word-level
dependence on the CDFG without considering the bits of
each value; (b) For other bitwise operations such as SHIFT,
ZEXT, SEXT, and TRUNC, each output bit depends on at most
a single input bit, but not necessarily the one at the same
position. In this case, we annotate each input value with bit
positions to distinguish different bits of the same word-level
value. (c) For arithmetic operations such as ADD and SUB,
each output bit can be dependent on multiple input bits.
The highest output bit is dependent on the largest number
of input bits, and we always examine this bit to consider

(b) CDFG

CUTSld = {{ld}}
CUTSA = {{a, ld}}
CUTSB = {{c, A}, {c, a, ld}}
CUTSC = {{d, A}, {d, a, ld}}
CUTSD = {{A, B, C}, .., {a, c, d, ld}}
CUTSE = {{D}, {A, B, C}, .., {a, c, d, ld}} 

(c) 4-feasible cuts

#define  c  (1<<8) 
u = a ^ (*b);
 for (i = q; i > 0; --i) {
     #pragma max_latency = 2
     if (u & c )  u ^= d;
     u = (u << 1);
 }

&

sel

^

<<

b

c dA

B C

D

E

ld

a

(a) C code

^

Figure 3: Cut enumeration for a CRC kernel – The memory
read ld is a black-box operation, while A-E are logic opera-
tions; ∧ = XOR; & = AND; << denotes a left shift; sel denotes
a MUX operation.

the worst case. As with (b), we annotate each input value
with the bit positions it depends on. For the given example
C[1 : 0] = A[1 : 0] + B[1 : 0], our analysis will determine
that C has four inputs A0, A1, B0, and B1.

Figure 3 demonstrates the cut enumeration for a cyclic
redundancy check (CRC) kernel. Based on the source code
(a) and the corresponding CDFG (b), the cut set for each
node are listed in (c). For simplicity, we only consider one
iteration of the loop. As shown in this figure, the black-box
operation ld only has a trivial cut, but other operations can
have multiple K-feasible cuts. Note that the AND between u
and a special constant c = (1 << 8) is used to test the high-
est bit of u. For this special case, our bit-level dependence
analysis will determine that the output value only depends
on a single input bit.

4.2 Relaxation-Based Labeling
The labeling step aims to compute a minimum-latency

schedule while considering mapping and respecting all SDC
constraints for dependence, relative timing, latency, and
clock period. Unlike conventional SDC scheduling algo-
rithms, our technique considers LUT mapping and computes
both the time step and the LUT level within the time step
for each operation. Our technique also differs fundamentally
from technology mapping algorithms, which operate on an
acyclic DAG with pre-defined register boundaries; instead,
it operates on an untimed CDFG along with user-specified
timing constraints which may result in additional cycles. To
this end, we introduce a relaxation-based labeling algorithm,
which to our knowledge is the first to achieve a latency-
optimal solution for both time step and LUT level under
timing constraints captured in the SDC form.

To jointly represent the time step and LUT depths of each
operation, we define the L-value of node v, Lv = (s, l), where
s denotes the time step of v in cycles, and l denotes the
arrival time of v within a time step. Given a target clock
period Tcp in LUT levels, it follows that s > 0 and 1 ≤
l < Tcp. For simplicity we assume that the delay of each
operation is quantized to LUT levels, and is less than Tcp

(that is, no combinational multi-cycle operations). However,
the proposed approach can easily be generalized to handle
real-valued delays and to multi-cycle operations.

We define the following operations for L-values below.
Here L1 = (s1, l1), L2 = (s2, l2), Delay is a delay value
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Figure 4: MAPS labeling for CRC – (a) CDFG with a latency constraint for the loop body shown in Figure 3; (b) SDC
constraint graph that captures dependence constraints (e.g., sE − sD ≥ 0 where sD and sE denote the time step of D and E,
respectively.), and a latency constraint (i.e., sA − sE ≥ −2); (c) MAPS labeling results for the constraint graph based on the
cut information from Figure 3. Each label Lv = (s, l) represents the L-value of node v, where s denotes the time step of v in
cycles, and l denotes the level of v in LUT depth.

of a combinational operation quantized to LUT levels, and
Lat is a time step difference value imposed by user-defined
relative timing and latency constraints. The first two oper-
ations are used to update the L-value for each node based
on different constraints, while the following operations are
used to facilitate the description of our labeling algorithm.

L1 + (0, Delay) =

{
(s1, l1 + Delay) if (l1 + Delay) < Tcp

(s1 + 1, Delay) otherwise

L1 + (Lat, 0) = (s1 + Lat, 0)

L1 < L2 =

{
true if (s1 < s2) or (s1 = s2 and l1 < l2)
false otherwise

min(L1, L2) =

{
L1 if L1 < L2

L2 otherwise

max(L1, L2) =

{
L2 if L1 < L2

L1 otherwise

In order to obtain a minimum-latency schedule while con-
sidering a rich set of scheduling constraints, our labeling
algorithm computes the optimal L-values, i.e. the minimum
L-values among all legal schedules, based on the constraint
graph of SDC [26] constructed from the CDFG. A straight-
forward idea for computing the optimal L-value of each node
is to propagate the L-values from primary inputs of the
CDFG to the primary outputs if the constraint graph is
acyclic. However, additional constraints such as maximum
relative timing constraints may result in cyclic dependences.
To overcome this challenge, we introduce a relaxation-based
labeling algorithm, which maintains a lower bound on the L-
value of each node and successively relaxes this lower bound
to meet each of the scheduling constraints for the node.

Algorithm 1 details the proposed relaxation-based label-
ing. Let Delayv denote the delay value of node v quantized
to the number of LUT levels, Latu→v denotes the weight of
the edge from u to v on the SDC constraint graph, which
also represents the minimum time step difference between u
and v. As shown in lines 1−2, the L-value of each node v is
initialized to (0, Delayv), which is a trivial lower bound on
v’s L-value without any constraints. The algorithm then it-
eratively updates the lower bound on each node’s L-value
(line 3-19) by propagating both mapping and scheduling

Algorithm 1: Labeling(CG,CUTS)

input : CG – constraint graph with nodes V and edges E;
CUTS – cut set for all nodes on CDFG.

output: L – labels for each node.
1 foreach node v in V do
2 Lv ← (0, Delayv)

// Tighten the labels by at most B iterations
3 for i← 1 to B do
4 updated← false
5 foreach node v in V do

// Mapping constraints
6 fv ← (∞,∞)
7 foreach cut C in CUTSv do
8 L′ ← (0, 0)
9 foreach node u in cut C do

10 L′ ← max{L′, Lu + (0, Delayv)}
11 fv ← min(fv , L′)

// Latency & relative timing constraints
12 gv = (0, 0)
13 foreach edge u→ v in E do
14 gv ← max{gv , Lu + (Latu→v , 0) + (0, Delayv)}
15 if Lv < max{fv , gv} then
16 Lv ← max{fv , gv}
17 updated← true

18 if updated = false then
19 return SUCCESS

20 return FAILURE

constraints according to Equations (2) and (3):

Lv ≥ fv = min
∀C∈CUTv

max
∀u∈C

{Lu + (0, Delayv)} (2)

Lv ≥ gv = max
∀u→v∈E

{Lu + (Latu→v, 0) + (0, Delayv)} (3)

Here fv and gv are two lower bounds of node v’s L-value
required by mapping constraints and SDC scheduling con-
straints, respectively. Following Equation (2), lines 6 − 11
in Algorithm 1 deal with mapping constraints, and calculate
the the new fv of node v by selecting the best cut for v. Sim-
ilarly, lines 12− 14 calculate the new gv of node v based on
various SDC scheduling constraints on the constraint graph.
If any of fv and gv is greater than the original Lv, we update
Lv = max{fv, gv} via relaxation in lines 15− 17.



Lemma 1. For each iteration of Algorithm 1, Lv is al-
ways a lower bound of node v’s L-value, i.e., Lv is less than
or equal to v’s L-value in any legal schedule that satisfies the
mapping and scheduling constraints.

Proof. Let S be a legal schedule, Lv be the L-value for
each node v in S, fv and gv be the lower bounds of v’s
L-value computed according to Equations (2) and (3) for S:

fv = min
∀C∈CUTv

max
∀u∈C

{Lu + (0, Delayv)}

gv = max
∀u→v∈E

{Lu + (Latu→v, 0) + (0, Delayv)}

Because S is a legal schedule, each node v must satisfy both
mapping and scheduling constraints, i.e., Lv ≥ max{fv, gv}.
Considering Algorithm 1, let Li

v denote node v’s L-value
after iteration i (i ≥ 0). We prove by induction that for
each iteration i:

Li
v ≤ Lv, ∀ node v (4)

Base case: When i = 0, our algorithm initializes L0
v =

(0, Delayv), which is a trivial lower bound because every op-
eration cannot finish before its own operation delay; there-
fore, it is evident that L0

v ≤ Lv.
Induction step: Suppose (4) is true for i = k, i.e., Lk

u ≤ Lu

for each node u. Considering i = k + 1, Algorithm 1 would
update Lk+1

v according to Equations (2) and (3):

fv = min
∀C∈CUTv

max
∀u∈C

{Lk
u + (0, Delayv)} ≤ fv

gv = max
∀u→v∈E

{Lk
u + (Latu→v, 0) + (0, Delayv)} ≤ gv

Lk+1
v = max{fv, gv} ≤ max{fv, gv} ≤ Lv

It is clear for fv ≤ fv and gv ≤ gv by substitute every Lk
u

with Lv and applying the inductive assumption Lk
u ≤ Lu.

Evidently, Equation (4) is also true for i = k + 1.

Algorithm 1 iteratively relaxes L-values until convergence.
SInce L-values are always lower bounds in each iteration,
Algorithm 1 is guaranteed to converge to a legal schedule
with optimal L-values if the problem is feasible.

Lemma 2. All nodes on the constraint graph would reach
their optimal L-values within B = D ·(|V |−1)·|V | iterations
if the scheduling problem is feasible.

Here |V | denotes the total number of nodes on the con-
straint graph, while D denotes the maximum delay in terms
of LUT levels for any edge on the constraint graph. Lemma 2
is relatively obvious by considering the worst-case mapping.
In the worst case, each node is mapped to a distinct LUT
(i.e., only trivial cuts are chosen). Since any simple path on
the constraint graph can include at most |V | − 1 nodes, the
L-value of any node can be at most D · (|V | − 1). As shown
in Algorithm 1, at least one of L-values is increased by at
least one in each iteration; otherwise, all nodes would have
obtained the optimal L-values and the algorithm would suc-
cessfully exit. Therefore, after at most B = D · (|V |−1) · |V |
iterations, all nodes should have settled at the optimal L-
values if the scheduling problem is feasible.

Theorem 1. Algorithm 1 returns a legal schedule with
optimal L-value for each node in pseudo-polynomial time,
and thus is able to achieve a minimum-latency schedule with
pseudo-polynomial complexity.

Algorithm 2: IncrementalScheduling(CG, Cr, L)

input : CG – constraint graph; Cr – resource constraints;
L – initial labels from the labeling step.

output: S – final schedule.
1 s← 0 // Time step
2 while more resource-constrained nodes to schedule do
3 foreach unscheduled resource-constrained node v with

time step s, in ascending priority order do
4 if no resource conflict for v at s then
5 schedule v at s
6 update resource scoreboard
7 else
8 Lv ← (s + 1, 0)
9 update the labels for v’s successors on CG

10 if labeling is infeasible then
11 report failure and exit

12 s← s + 1;

If the scheduling problem is feasible, Algorithm 1 returns
successfully after all nodes settle at their lower bounds while
satisfying all dependence, relative timing, and clock period
constraints (lines 17-18). Otherwise, it reports failure (line
19). As the L-value Lv essentially represents the number
of time steps plus the number of LUT levels from primary
inputs to node v, we have shown that the L-values computed
by Algorithm 1 are optimal L-values, and our schedule is
thus minimum-latency.

Figure 4 illustrates the labeling process for the CRC kernel
described in Figure 3. Given the CDFG and a user-specified
latency constraint in Figure 3(a), our labeling algorithm first
constructs the constraint graph as shown in Figure 4(b).
The constraint graph contains the same set of nodes on the
CDFG but includes a different set of weighted edges, with
each edge representing an SDC constraint. For each edge on
the CDFG, we add a zero-weighted edge accordingly to the
constraint graph to represent a dependence constraint (e.g.,
A → ld captures sA − sld ≥ 0). For the latency constraint,
we add an additional edge from E to A with a weight of
−2, representing the latency constraint sA − sE ≥ −2. As
shown in Figure 4(b), the additional latency constraint can
introduce a new cycle on the constraint graph. Based on the
constraint graph, we compute the L-value for each node in
topological order of the original data flow graph using Al-
gorithm 1. Here we assume that the black-box operation ld

takes a full cycle. Therefore, node A has a L-value of (1,0),
indicating that the earliest time step of A is one and the
minimum LUT depth is zero. Our algorithm computes the
L-values for logic operations A-E based on their cut informa-
tion. For example, the best cut for node E is {a,c,d,ld},
suggesting an optimal L-value of (1,0). The final labeling
results are shown in Figure 4 (c).

4.3 Incremental Scheduling
In this section we introduce an incremental scheduling

algorithm to handle the resource constraints on black-box
operations (e.g., memory port limits). Given that resource-
constrained scheduling is NP-hard in general, MAPS em-
ploys a heuristic method which legalizes an initial schedule
from the previous labeling step by incrementally reschedul-
ing the operations that cause resource conflicts.

Algorithm 2 lists the pseudo-code for our incremental
scheduling algorithm. We start from an initial schedule ob-
tained from the labeling step where all nodes are labeled
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Figure 5: MAPS scheduling for CRC – (a) MAPS scheduling for CDFG nodes based on their L-values from Figure 4; (b)
Mapped design for (a), which results in a 2-cycle latency with one LUT and two registers; (c) Conventional schedule for CRC
based on pre-characterized delay values of individual operations; (d) Mapped design for (c), which results in a 3-cycle latency
with two LUTs and three registers. Here we assume that the target clock period is 5ns; each LUT or logic operation takes
2ns; the black-box operation ld takes a full cycle.

with the optimal L-values, i.e., scheduled as-soon-as-possible
(ASAP), and legalize the solution by gradually postponing
resource-constrained nodes to later time steps based on a
priority function. For each time step s, we check if a re-
source conflict exists for any resource-constrained nodes that
are initially assigned to s. If so, we postpone the ones with
the least priorities, which to some extent is similar to how
list scheduling operates. The priority of each node is deter-
mined based on its ASAP label (i.e., the L-values obtained
from Algorithm 1) and its as-late-as-possible (ALAP) label
that can be computed in a similar manner using backward
propagation. More specifically, we compute the ALAP la-
bel for each node by iteratively updating the upper bound
of its L-value. Initially, the ALAP label of each node v
is set to the maximum L-value, the upper bound L-value
without any constraints; afterwards, for each cone C rooted
at r that contains v, we tighten the upper bound of v’s L-
value by checking every successor of r; meanwhile, we also
refine the upper bound of v’s L-value by checking each out-
going edge from v on the constraint graph to ensure that all
SDC timing constraints are satisfied. We repeatedly tighten
the upper bound of L-value for each node until convergence.
Otherwise, the problem is infeasible and we will stop after at
most B = D · (|V |−1) · |V | iterations similar to the previous
ASAP labeling process.

After obtaining both ASAP and ALAP labels, we can
calculate the priority of each node based on its mobility,
which is defined to be the difference between the ALAP and
ASAP labels. Intuitively, nodes with a lower mobility are
assigned with a higher priority. If we increase the label for
a resource-constrained node v, we also incrementally update
the labels for all the successors of v using the relaxation-
based labeling process introduced in the previous section.

Figure 5 illustrates the MAPS scheduling results for the
CRC kernel. Since ld is the only black-box operation, there
is no resource conflict for this example. The scheduled design
will be further mapped to LUTs and registers as shown in
Figure 5(b). For comparison, Figure 5 (c) and (d) illustrate
the conventional schedule and the corresponding mapped
design. Clearly, our MAPS algorithm is able to reduce the
latency by mapping multiple operations into a single LUT,

and at the same time reduce the LUT and register usage by
maximizing the utilization of each LUT.

Overall Time Complexity – It is important to notice
that the L-values always increase monotonically during both
relaxation labeling and incremental scheduling. According
to Lemma 2, the upper bound of any L-value is D ·(|V |−1),
so the maximum number of iterations involved during relax-
ation labeling and incremental scheduling will be bounded
by D · (|V |−1) · |V |. In each iteration, L-values are updated
optimally according to each edge in the constraint graph,
and the complexity for each iteration is bounded by O(|E|).
As a result, the total time complexity for the relaxation
and incremental scheduling is O(D · |V |2 · |E|). Note that
since the maximum latency value D is usually a very small
constant, our algorithm would converge in polynomial time
O(|V |2 · |E|).

5. EXPERIMENTAL RESULTS
Our experiments are conducted based on a widely used,

state-of-the-art commercial HLS tool, which takes a behav-
ioral C/C++ program as an input and outputs RTL code
in VHDL or Verilog based on the LLVM compiler infras-
tructure [19]. To our knowledge, the commercial HLS tool
makes use of pre-characterized delay values of individual op-
erations to perform scheduling and relies on the underlying
logic synthesis tool to perform technology mapping after the
HLS stage (to which we refer as the baseline approach).

We have implemented the MAPS algorithm in C++ as
an LLVM pass, which takes the LLVM IR from the origi-
nal HLS tool as input, reorders instructions based on our
proposed mapping-aware constrained scheduling algorithm,
and generates tool-specific intrinsics (i.e., wait statements)
to specify clock boundaries so that the HLS tool will pre-
serve our scheduling results. We push the scheduling results
through the same HLS engine and RTL back end to perform
resource binding and RTL code generation. The generated
Verilog RTL design is implemented by Xilinx Vivado 2013.4
targeting a Virtex-7 FPGA device. Notably, both the base-
line approach and our MAPS approach rely on the same
downstream CAD toolflow to perform technology mapping.
Nevertheless, our MAPS approach can generate schedules



Table 1: Description for MAPS benchmarks.

Design
Application # of LLVM IR

DescriptionSource Domain Operations

XORR Kernel 773 XOR reduction on a bit vector
GFMUL Kernel 85 Galois field multiplication

CLZ Kernel 450 Couting the number of leading zeros in a 64-bit word
CRC MiBench [17] Communication 58 Cyclic redundancy check for error detection
MD5 MiBench [17] Cryptography 996 Message-digest algorithm
AES CHStone [18] Cryptography 806 Advanced encryption standard
SHA CHStone [18] Cryptography 476 Secure hash algorithm

DFADD CHStone [18] Scientific computing 838 Double-precision floating-point addition
MT [22] Scientific computing 1171 Mersenne twister 32-bit random number generator
RS [2] Communication 840 Reed-Solomon decoder
DR [20] Machine learning 262 Digit recognition based on K-nearest neighbors

that are more friendly for LUT mapping, resulting in higher
quality of results.

We have evaluated the proposed technique with a broad
range of benchmarks used in a variety of application do-
mains, such as cryptography, scientific computing, commu-
nication, and machine learning. Table 1 briefly describes
these benchmarks. For each benchmark, we apply the same
set of HLS front-end optimizations such as loop unrolling
and array partition for both the baseline approach and our
approach. Our proposed algorithm focuses on mapping op-
timization for logic operations (e.g. AND, OR, and XOR), bit-
wise operations (e.g. ZEXT, SEXT, SHIFT, and TRUNC), and
narrow-bit-width arithmetic operations (e.g. ADD, SUB, and
CMP), while all other operations are treated as black-box op-
erations. We model the delay of each black-box operation
using pre-characterized delay values parsed from the sched-
ule report generated by the commercial HLS tool; the delay
of non-black-box operations are modeled based on the delay
of a single LUT.

5.1 Results for Representative Kernels
We first present the results for three representative ap-

plication kernels, i.e. CLZ, XORR, GFMUL, which provide in-
sights for the advantages of MAPS. In these kernels, most
of the operations are logic operations, which can be aggres-
sively chained and mapped to a few LUTs. Table 2 shows the
detailed timing, latency, and resource usage for each kernel.

Figure 6 lists the C code snippets for all kernels. XORR

applies a simple XOR operation over a bit vector and forms a
balanced XOR reduction tree with tree-depth of 10. Given the
5ns target clock period, the original HLS tool can chain at
most six levels of XOR operations into a single cycle based on
the pre-characterized delay values, resulting in a two-cycle
latency. By considering technology mapping, our maps al-
gorithm is able to map all the XOR operations into five levels
of 6-input LUTs, which can achieve a zero-latency combi-
national design while still meeting the target clock period
constraint. Similarly, GFMUL applies a set of AND/XOR/SHIFT

operations to a few inputs, while CLZ consists of a number of
AND/OR operations to compute the number of leading zeros
in a 64-bit word. Since all operations in these kernels are
logic or bitwise operations, MAPS can effectively pack all
operations of GFMUL to form a combinational circuit, and
reduce the latency of CLZ to one.

By packing more logic operations together and enabling
more aggressive operation chaining, our MAPS algorithm
also provides added benefits by reducing register usage due
to the shorter latency, and at the same time, reducing LUT

(a) XORR

out = 0
for (i = 0; i < n; i++) {
    #prgma hls unroll
    out ^= in[i]
}

zero = 1;  out = 0;
for (i = 0; i < 64; i++) {
    #pragma hls unroll
    if (x[i]) zero = 0;
    out += zero;
  }

for (i = 0; i < n; i++) {
    #pragma hls unroll
    if (b & (1<<i))
         out ^= a << i;
  }

(c) CLZ(b) GFMUL

Figure 6: C code snippets for three kernels.

usage by increasing the utilization of each individual LUT.
For example, MAPS completely removes all registers (or
FFs) for XORR and GFMUL. For the CLZ kernel, MAPS can
reduce the number of FFs by 78% and LUTs by 40% with
a 5ns target clock period.

5.2 Results for Real-Life Applications
We have also evaluated our approach on a number of real-

life applications selected from a broad range of domains.
Table 2 shows the latency and resource usage comparisons
for these designs. We observe MAPS can significantly reduce
the latency over the commercial HLS tool (up to 60%) while
still meeting timing for all applications. These results pro-
vide further evidence that MAPS is able to generate more
efficient solutions with shorter latency and hence higher per-
formance by better utilizing the clock period through chain-
ing more operations in each cycle.

From Table 2, we also observe that our approach can effec-
tively reduce the usage of FFs and LUTs by eliminating un-
necessary registers across clock boundaries and maximizing
the utilization of each individual LUT. On average, MAPS
reduces the number of FFs by 25% and the number of LUTs
by 9% with the 5ns target clock period. However, it is worth
noting that since our current approach mainly focuses on la-
tency optimization, it may lead to LUT duplication and thus
increase resource usage in a few cases (e.g. SHA and MD5).

5.3 Efficiency Analysis for MAPS
To understand the efficiency of MAPS, we have evalu-

ated the execution time for the HLS process with differ-
ent scheduling algorithms. Table 3 indicates that all bench-
marks finish in several seconds, and the additional runtime
overhead for MAPS is negligible. While the worst-case time
complexity of MAPS is relatively high due to iterative label-
ing, our experimentation reports that the labeling algorithm
converges within only a few iterations for all designs.

Table 3 also lists the number of operations per cycle for
different scheduling algorithms. Compared to the baseline
approach, MAPS can pack more operations together by con-



Table 2: Timing and resource usage comparison with target clock periods of 8ns and 5ns – CP = achieved clock period; LAT
= latency in # of cycles; LUT = # of lookup-tables; FF = # of flip-flops; AVERAGE = the geometric mean of improvements for
the eight real-life applications. Values in parentheses are percentage of increase (+) or decrease (-) over the baseline approach
used in a state-of-the-art commercial HLS tool.

Target Clock Period = 5ns Target Clock Period = 8ns

Design Approach CP(ns) LAT LUT FF CP(ns) LAT LUT FF

XORR
baseline 2.88 1 133 17 4.38 1 124 3
MAPS 2.28 0 (-100%) 120 (-10%) 0 (-100%) 2.19 0 (-100%) 120 (-3%) 0 (-100%)

GFMUL
baseline 2.93 2 50 27 4.38 1 50 18
MAPS 1.68 0 (-100%) 43 (-14%) 0 (-100%) 1.64 0 (-100%) 43 (-14%) 0 (-100%)

CLZ
baseline 2.93 11 177 169 4.43 7 139 121
MAPS 2.93 1 (-91%) 107 (-40%) 38 (-78%) 4.38 1 (-86%) 87 (-37%) 17 (-86%)

CRC
baseline 2.93 161 57 310 4.43 129 52 249
MAPS 2.93 65 (-60%) 41 (-28%) 126 (-59%) 4.43 65 (-50%) 41 (-21%) 126 (-49%)

MD5
baseline 4.39 126 9175 6747 5.83 67 9316 4952
MAPS 4.24 95 (-25%) 8812 (-4%) 8417 (+25%) 5.94 48 (-28%) 8570 (-8%) 6626 (+34%)

AES
baseline 4.78 197 4895 5855 5.74 141 4322 4459
MAPS 4.44 133 (-32%) 3989 (-19%) 3540 (-40%) 5.90 109 (-23%) 4007 (-7%) 3369 (-24%)

SHA
baseline 4.21 561 2916 3196 5.10 321 3720 2331
MAPS 3.87 421 (-25%) 3032 (+4%) 3263 (+2%) 5.97 241 (-25%) 3146 (-15%) 2466 (+6%)

DFADD
baseline 4.81 11 5950 2735 6.44 8 5282 1671
MAPS 4.80 10 (-9%) 5528 (-7%) 2106 (-23%) 6.35 7 (-12%) 4353 (-18%) 1527 (-9%)

MT
baseline 3.96 146 3617 4630 6.31 59 7652 2857
MAPS 4.03 130 (-11%) 3447 (-5%) 2295 (-50%) 6.37 57 (-3%) 7850 (+3%) 2060 (-28%)

RS
baseline 4.23 124370 1710 974 4.95 105351 1502 875
MAPS 4.30 79222 (-36%) 1546 (-10%) 828 (-15%) 5.61 76040 (-28%) 1598 (+6%) 820 (-6%)

DR
baseline 3.70 520021 625 432 5.06 340021 483 236
MAPS 3.80 400021 (-23%) 630 (+1%) 427 (-1%) 4.64 260021 (-24%) 480 (-1%) 214 (-9%)

AVERAGE -29% -9% -25% -25% -8% -14%

Table 3: Runtime and schedule statistics.

Runtime (seconds) Operations/cycle

baseline MAPS baseline MAPS

XORR 56.0 64.7 387 773
GFMUL 4.3 11.1 28 85

CLZ 24.0 29.7 38 225
CRC 3.9 11.8 10 19
MD5 15.6 28.8 8 10
AES 20.5 61.9 16 24
SHA 8.9 19.6 16 22

DFADD 9.3 11.1 25 27
MT 36.5 193.5 8 11
RS 23.0 24.6 8 9
DR 44.5 50.5 9 11

sidering mapping, thus creating the opportunity for more
aggressive operation chaining to minimize the schedule la-
tency and area.

6. DISCUSSIONS
In this section, we will draw the distinction between

MAPS and other integrated scheduling techniques and out-
line the relationship among MAPS, SDC scheduling, and
retiming.

MAPS jointly performs scheduling and mapping to en-
able more aggressive operation chaining that is otherwise
not possible with conventional scheduling approaches. The
MD5 example in Figure 1(c) demonstrates that even the

most accurate delay estimates obtained using the post-place-
and-route back-annotation approach proposed in Zheng et
al. [31] fails to reveal that mapping all operations into a sin-
gle LUT and scheduling them within the same cycle leads
to the shortest latency. In fact, such an approach would
quickly converge to a sub-optimal solution, like the one in
Figure 1(b). The failure stems from the reliance on the
additive delay model commonly assumed throughout HLS
tools, which simply sums up the delay of the critical path
to determine the necessary clock boundaries to meet timing.
Such an additive delay model is inaccurate in the perspec-
tive of downstream physical implementation because it does
not consider mapping optimizations that are able to clus-
ter multiple operations into a single LUT. The fact that the
flow proposed in [31] focuses on the accuracy of delay esti-
mates, while MAPS emphasizes the fundamental property
of LUT mapping, [31] serves as a complement to the MAPS
framework.

Although MAPS is designed to efficiently handle various
difference constraints, the problem it addresses cannot be
easily solved by the SDC scheduling approach [30]. Specif-
ically, the task of computing and using delay information in
the presence of mapping is non-trivial. MAPS determines
the minimum L-value of each node based on cut enumera-
tion, which selects one of the possible cones rooted at the
node. Such either-or constraints cannot be optimally han-
dled by SDC without relying on a heuristic transformation.

On the other hand, MAPS bears similarity to the
retiming-based mapping technique [24], but is in fact



a generalization of the retiming-based mapping problem.
Retiming-based mapping starts with a timed circuit with an
initial register placement and aims to reposition these reg-
isters optimally such that the timing is met. MAPS instead
takes in an untimed behavioral description and optimally
add registers in between operations to achieve the minimum
latency while meeting timing. An intuitive attempt to re-
duce the MAPS scheduling problem to the retiming-based
mapping problem is to add different numbers of registers at
the end of the input untimed circuit and allow the retiming-
based algorithm to optimally propagate the registers into
the circuit. While this approach simply requires a binary
search on the number of registers, it is not optimal in the
presence of cycles. The retiming-based mapping approach is
unable to propagate the register into a cycle and will result
in an infeasible mapping. It is possible to experiment with
different initial register placements, but the complexity will
be exponential, rendering the approach impractical.

7. CONCLUSIONS
In this paper, we propose a mapping-aware scheduling al-

gorithm, which can efficiently incorporate mapping infor-
mation into scheduling in order to generate much more effi-
cient solutions for LUT-based FPGAs. Unlike conventional
scheduling algorithms, our proposed algorithm jointly per-
forms cut-based mapping and relaxation-based scheduling
while respecting a variety of dependence, relative timing,
latency, and resource constraints. We show that our algo-
rithm can efficiently compute an optimized scheduling solu-
tion with reasonable execution time. Experimental results
demonstrate that our proposed technique can achieve very
promising improvements in performance and resource usage
by enabling more aggressive operation chaining and maxi-
mizing the utilization of each LUT compared to the state-
of-the-art commercial HLS tools.
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